

RESEARCH ARTICLE

A sturgeon cartilage extracellular matrix-derived bioactive bioink for tissue engineering applications

Supplementary File

A series of dSC-ECM-derived bioink precursor solutions were prepared; these solutions contained 5 mg/mL LAP, 80 mg/mL, 100 mg/mL, and 120 mg/mL pure dSC-ECMMA, respectively, which were correspondingly defined as dSC-ECM-80p, dSC-ECM-100p, and dSC-ECM-120p.

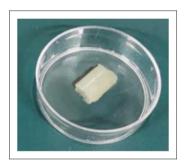
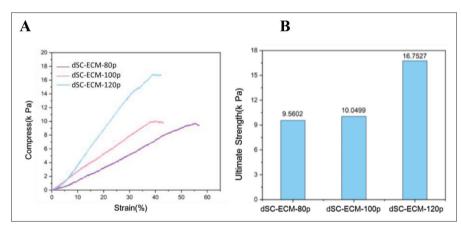



Figure S1. Gross macroscopic view of the solidified pure dSC-ECM-120p hydrogel by irradiating with 405 nm blue light.

Figure S2. (A) The compressive curves and (B) ultimate strength of tested samples. The compression modulus at the maximum strain of dSC-ECM-80p, dSC-ECM-100p, and dSC-ECM-120p is 9.5602 kPa, 10.0459 kPa, and 16.7527 kPa, respectively. Since these solidified hydrogels were hard and fragile (**Figure S2B**), it is difficult to use the bioink with dSC-ECMMA alone for cartilage repair.