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Abstract
Artificial intelligence (AI) has been experiencing rapid growth in recent years, 
and numerous applications are improving the single-step efficiency of the whole 
assisted reproductive technology (ART) procedure. In this review, we collected all 
the algorithms supplying ART and selected those supporting the clinical assistance 
to the procedure up to the successful attempt. Those with a clear role in improving 
ART performances were further selected. We found a questionnaire-based algorithm 
identifying patients at risk for endometriosis with early management and better 
fertility outcome. An algorithm can detect the values of simple gamete production 
(male) and reservoir (female) according to gradual scale allocation, and display 
themas normal or abnormal, spontaneousor stimulated gamete production. This 
can provide significant benefits for infertile couples undergoing diagnostic and 
therapeutic journeys. The calculators for the starting dose of gonadotropins and 
the trigger timing during controlled ovarian stimulation make clinical management 
more efficient. With the application of AI in ART, the ability to determine the optimal 
number of metaphase II oocytes required for blastocyst formation and number 
of oocytes needed for embryo production has been significantly improved. The 
calculation of the implantation rate as proposed in different calculators, using the 
ultrasound of endometrial vascularization or the age and euploidy of the embryo 
transferred, may provide further advancement in managing the ART procedure 
with more participation from the couples to increase the efficacy of the procedures. 
Finally, the calculator of presumptive success with an ART program based on couples 
or medical center profiling and efficiency is of tremendous comfort to couples. In 
conclusion, algorithms and machine learning development in human reproduction 
are growing daily with evident benefits. Infertility treatments by in vitro fertilization 
(IVF) are assisted by several algorithms that improve the efficiency of each procedure 
step, making IVF program’s management more effortless.
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1. Introduction
Artificial intelligence (AI) in medical issues management 
can improve the accuracy, efficiency, and effectiveness of 
health-care delivery, leading to better patient outcomes 
and improved public health. AI leads to deep analysis of 
complex systems detection and to building up provisions 
to prospectively manage dynamic changes in our society. 
The future fertility outcomes are a key input to estimating 
future population size, depending on the social custom 
and economic safe of populations of different countries. 
Population size and age structure modifications might have 
dramatic economic, social, and geopolitical impacts in 
many countries. On the other hand, forecasting mortality, 
fertility, infertility treatments, migration, and population 
are the necessary prerequisite for the sustainable 
development of the human condition. Infertility, defined 
as a failure to achieve pregnancy after 1  year of regular 
unprotected sexual intercourse, affects 8.8% of US women 
aged 15 – 49 years[1] and is often associated with significant 
psychological distress[2].

The highest and lowest fertility rates in countries 
reported by World Bank in 2021[3] are shown in Table 1. 
In close association with that data, the infertility rates were 
reported differently in developed regions compared to non-
developed ones. The prevalence rate of infertility has been 
reported to elevate from 3.5% to 16.7% in more developed 
nations and 6.9% to 9.3% in less-developed ones[4].

There has been an increase in the literate population 
using contraception and assisted fertilization techniques to 
generate a family plan. The birth of over 8 million babies 
through in vitro fertilization and embryo transfer (IVF-ET) 
programs in the world has been registered following the 

born of Luise Brown, Robert Edwards’s first successful 
human application of this procedure[5]. An IVF program 
is divided into four separate phases, each responsible, 
at different percentages, for the final result: Controlled 
ovarian stimulation (COS) to obtain multiple oocytes[6,7], 
laboratory treatments for fertilization[8], embryo 
differentiation[9], and ET[10]. Key performance index (KPI) 
detects optimal single-step performance compared with 
good medical and laboratory standard procedures leading 
to optimizing chances of implantation and live birth[11,12]. 
The gold standard of the single steps of this procedure 
is now entering the era of being managed by AI rather 
than human controls. However, there have been mixed 
results, presented with some positive evidence and some 
ineffective applications. To optimize the results, periodic 
internal and external checks of these KPIs are essential. 
This has already been established as a standard by various 
registers in the world, and reports are sent for diagnosis 
of various parameters such as entry, age of the partners[13], 
type of therapeutic approach, supply of gametes, and 
accessory pathologies[14].

The improvement of assisted reproductive technologies 
(ART) through AI applications is crucial in the perspective 
of declines in fertility and slow population growth related 
to the increased trend of female educational attainment[4]. 
AI may be one of the most important solutions to 
counteract the global population decline observed in the 
last decades[15].

This review aims to focus on the already published 
AI algorithms and mathematical models that have been 
found to influence IVF efficiency, specifically embryo 
implantation, with data extracted from the evidence or 
convincing experimental promises. This review prioritizes 
the clinical algorithms rather than those applied in the 
laboratory because of their evident superiority with the 
help of the entire program.

2. Methods
We performed PubMed and Cochrane searches for English 
publications from January 2013 to March 2023 with keywords: 
“Assisted reproductive technology,” “ART,” “embryo 
implantation,” “embryo nidation,” “endometrial receptivity,” 
“endometrial decidualization,” “aneuploidy,” “embryo loss,” 
“implantation failure,” “repeated implantation failure,” “RIF,” 
“microbiome,” “early embryos miscarriage,” “early abortion,” 
“endometrial omics,” “endometrial genetic assessment,” 
“endometriosis,” “endometritis,” “uterine abnormalities 
and implantation failure,” “uterine abnormalities and early 
miscarriage,” “adenomyosis and embryo implantation,” 
“thyroid,” “thrombophilia,” “immunology,” “myomas,” 
“polyps,” “difficult embryo transfer,” “ART management,” 

Table 1. The highest and lowest fertility rates in countries 
reported by World Bank in 2021

Countries with the highest 
fertility rates (by births per 
woman)

Countries with the lowest fertility 
rates (by births per woman)

1. Niger – 6.8
2. Somalia – 6.0
3. Congo (Dem. Rep.) – 5.8 (tie)
4. Mali – 5.8 (tie)
5. Chad – 5.6
6. Angola – 5.4
7. Burundi – 5.3 (tie)
8. Nigeria – 5.3 (tie)
9. Gambia – 5.2
10. Burkina Faso – 5.1

1. South Korea – 0.9
2. Puerto Rico (US territory) – 1.0
3. Hong Kong (China SAR) – 1.1 (tie)
4. Malta – 1.1 (tie)
5. Singapore – 1.1 (tie)
6. Macau (China SAR) – 1.2 (tie)
7. Ukraine – 1.2 (tie)
8. Spain – 1.2 (tie)
9. Bosnia and Herzegovina – 1.3 (tie)
10. San Marino – 1.3 (tie)
11. Moldova – 1.3 (tie)
12. Italy – 1.3 (tie)
13. Andorra – 1.3 (tie)
14. Cyprus – 1.3 (tie)
15. Luxembourg – 1.3 (tie)
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“mathematical models,” “embryology and algorithms,” “good 
embryo transfer,” and “artificial intelligence.” Algorithms 
included all published diagnostic, timing, and therapeutic 
tools to optimize assisted fertilization program.

3. Results
We found 44 publications, with 15 papers including 
supporting diagnostic and/or predicting tools to upgrade 
the levels of medical assistance to the ART programs 
(Table  2). We excluded the others because they were 
ineffective in improving diagnostic penetrance, clinical 
compliance, and/or prediction capability[16]. The 
elaborations of how the AI tools assist in the particular 
management/diagnosis/treatment of ART-related areas are 
as follows:

3.1. Endometriosis

Endometriosis is a disease-causing pain and infertility[17], 
encountered in nearly 50% of infertile women. Medical 

efforts do not help treat endometriosis-caused infertility, 
for which the only options are surgery and/or ART[18]. 
Surgery enhances the chances of conceiving naturally 
during the 12–18 ensuing months, irrespective of the 
stage of the disease but does not improve ART results[18]. 
Therefore, ART is the primary option for women whose 
infertility is associated with endometriosis and/or over 
35  years of age[19]. However, unfortunately, patients who 
had longer diagnostic delays for endometriosis had more 
pre-diagnosis endometriosis-related symptoms and higher 
pre-diagnosis health-care utilization and costs compared 
with patients diagnosed earlier after symptom onset, 
providing evidence in support of earlier diagnosis[20]. In 
other words, time to pregnancy is a crucial prognostic factor 
inversely related to the success of the treatments; thus, it is 
crucial to anticipate the diagnosis of this disease at present, 
occurring several years after the symptoms appear[6]. 
Recently a new validated algorithm was introduced as a 
screening for the diagnosis of endometriosis based on a 

Table 2. Diagnostic and therapeutic algorithms useful in the diagnosis and treatment of infertile couples

Diagnosis/treatment Algorithms References

Endometriosis Presumptive diagnosis by questionnaire [21]

Sperm evaluation according to WHO criteria: WHO 
Semen Analysis 2021

Sperm evaluation by WHO criteria, 2021 [25]

An ovarian reservoir according to AMH Classification of the ovarian reservoir  
according to AMH and age

[26,27]

Ovarian reservoir according AFC Classification of ovarian reservoir according to the AFC [44]

Starting dose gonadotropins Gonadotropin starting dose calculator [28]

Trigger time calculation: Day/hour To develop an interpretable machine learning model for 
optimizing the day of trigger in terms of mature oocytes (MII), 
fertilized oocytes (2PNs), and usable blastocysts

[30]

Number of oocytes exposed  
to sperm during ART cycle

A prediction tool was developed to aid clinicians in determining 
the optimal number of oocytes to expose to sperm, reducing the 
number of unused embryos created, and immediately addressing 
current patient and clinician concerns.

[44]

ART calculator Blastocyst presumptive calculation from recruited MII oocytes [32]

Nomograms Blastulation rate prediction in specific infertile groups selection [9]

Endometrial receptivity score Endometrial scoring for implantation prediction [34]

Algorithm predicting implantation efficiency 
according to the effects of female age and 
anticipated blastocyst euploidy rates on cumulative 
implantation rates

Estimation of implantation of euploid and aneuploid embryos 
after transfer according to the age of the women and number of 
embryos transferred 

[33]

Chance to have a baby Presumptive successful IVF treatment stratified for the infertile 
couple’s features

[33]
[35]
[36]
[37]

The working group achieved consensus on a list of 
KPIs, PIs, and RIs useful for internal and external 
controls of ART treatments

KPIs, PIs, and RIs to ascertain good medical practice in ART [12]

Abbreviations: KPIs: Key performance indicators; PIs: Performance indicators; RIs: Recommendation indicators; ART: Assisted reproductive 
technology; AMH: Anti mullerian hormone; AFC: Antral follicular count; MII: Metaphase II, 2PN: 2 pronuclear
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patient questionnaire with good prognostic value[21]. This 
screening can distinguish patients at risk of endometriosis 
early, with bigger treatment possibilities (Table 2).

The algorithm introduced by Chapron et al.[21] is 
known as well as the endometriosis fertility index 
(EFI)[22] and is used as a screening tool for the diagnosis 
of endometriosis in women with infertility. The 
algorithm introduced by Chapron et al. is known as the 
EFI and is used as a screening tool for the diagnosis of 
endometriosis in women with infertility[21]. The risk 
calculator is based on a patient questionnaire that 
includes several factors related to endometriosis, such 
as symptoms, clinical history, and imaging findings. 
The risk calculator questionnaire includes six questions 
related to age, duration of infertility, history of surgery for 
endometriosis, ovarian reserve, anatomical factors such as 
tubal patency and uterine anomalies, and the severity of 
endometriosis based on imaging findings. Each factor is 
assigned a score, and the total score is used to predict the 
likelihood of endometriosis and the chances of achieving 
a pregnancy. The risk calculator has been shown to have 
good predictive value. For example, the higher the score, 
the lower the chances of achieving a pregnancy and the 
greater the likelihood of endometriosis. However, it is 
important to note that the risk calculator is not a definitive 
diagnostic tool and should be used with other diagnostic 
methods, such as laparoscopy and histological analysis.

The added value of this presumptive diagnosis 
obtained with a simple but effective algorithm is obtaining 
an early diagnosis with the benefit of its surgical treatment 
or slowing down its potential evolution. To validate the 
benefits of adopting the algorithm, an initial population 
of 2527  patients was used to test its development. The 
population was divided into two groups, including 
1,195  patients in the study group with histologically 
proven endometriosis, and 1332  patients in the control 
group who did not have any endometriotic lesions 
during surgery. However, the use of these algorithms is 
still too recent to further validate the advantages of their 
adoption[21].

It should be emphasized that patients with clinically 
diagnosed endometriosis reportedly experience a decrease 
in endometrial receptivity[23,24]. Although the exact 
mechanism by which endometriosis impairs endometrial 
receptivity is not fully understood, ongoing research is 
investigating changes in endometrial gene expression, 
sex hormone receptors, and cell adhesion molecules[24]. 
However, the role of specific gene expression mutation 
(HOXA 10) in the cyclical endometrial growth and 
differentiation may affect the steroid hormones’ effects on 
the tissue for progesterone resistance[24].

3.2. Gamete production estimation

Gamete production and reservoir are prerequisites for 
couples’ fertility and the efficiency of infertility treatments 
(Table 2).

3.3. Sperm

The gold standards for sperm counts and motility 
assessment are already established by continuous time-
related adjustment according to the big data collection[25], 
and a simple algorithm is implemented to ease the 
diagnostic procedure (Table  2). More specifically, the 
user is required to enter details such as seminal volume, 
nemaspermic concentration, progressive motility, vitality, 
and morphology; then, for each of these parameters, the 
algorithm automatically checks whether any seminal 
alteration is present. According to the 2021 guidelines 
of the World Health Organization, the threshold values 
separating the normal range from abnormally low values 
are defined, for each parameter, to represent the fifth 
percentile in a sample of almost 3500 fertile men of 
different ages and from 12 different countries around the 
globe.

3.4. Oocytes

Oocyte reservoir was more recently divided as hypo-, poor, 
normal, and hyper-responders in terms of specific values 
of anti-mullerian hormone (AMH) and/or antral follicular 
count (AFC) for a potential response to the ovarian 
stimulation with gonadotropins[26,27]. A  simple algorithm 
based on the collected data of large communities of fertile 
and infertile women eases the decision-making for ART 
(Table 2). Similarly to the previously described algorithm 
for seminal alteration, the user simply needs to specify the 
AMH blood level (in ng/mL) to implemental classification 
into one of five possible tiers, ranging from “very low” to 
“very high” level.

3.5. COS

COS is a medical procedure used to stimulate the ovaries 
to produce multiple eggs, typically for use in ART such as 
IVF. Monitoring the response to COS is essential to ensure 
optimal outcomes. Several algorithms have been developed 
to adequately monitor COS, including predicting the 
response to COS, optimizing treatment protocols, and 
personalizing treatment based on individual patient 
characteristics.

Machine learning is an approach to optimizing COS 
monitoring using the dynamics simulation of ovarian 
response to COS. Machine learning algorithms can 
be trained on large datasets of patient characteristics, 
including age, body mass index, hormonal levels, and other 
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factors, to predict the likelihood of a successful response 
to COS. These algorithms can then be used to inform 
treatment decisions, such as selecting the appropriate dose 
of ovarian stimulation medication (Table 2). By adjusting 
treatment protocols based on these algorithms, clinicians 
can optimize outcomes while minimizing risks such as 
ovarian hyperstimulation syndrome (OHSS). For example, 
the follicle-stimulating hormone (FSH) dosing algorithm 
has been used to predict response to COS with progressive 
improvement using large datasets of patient characteristics.

Another approach that has been used to optimize 
COS treatment protocols is reinforcement learning. 
Reinforcement learning algorithms can learn to optimize 
treatment protocols by iteratively adjusting treatment 
parameters based on feedback from previous patients. For 
example, an algorithm could learn to adjust the dose and 
timing of stimulation medication to maximize the number 
of eggs retrieved while minimizing side effects.

Real-time monitoring algorithms can be used to develop 
personalized treatment plans that optimize outcomes 
while minimizing risks. For example, a deep learning 
algorithm could analyze ultrasound images of ovarian 
follicles to predict the number and quality of oocytes that 
will be retrieved. By integrating these predictions into 
treatment protocols, clinicians can optimize outcomes 
while minimizing risks.

These algorithms can optimize COS in ART, improving 
the efficiency and effectiveness of treatment while 
minimizing risks and improving patient outcomes[26,27] 
(Table 2).

3.6. Starting dose of gonadotropins

A recent development involves the creation of machine 
learning models that are interpretable and designed to 
optimize the selection of starting gonadotropin doses 
based on criteria such as mature oocytes (metaphase II 
[MII]), fertilized oocytes (2 pronuclear [2PN]), and viable 
blastocysts[28,29]. Fanton et al. have proposed a machine 
learning model for selecting the initial FSH that can 
deliver optimal laboratory results while minimizing the 
use of starting and total FSH[30]. Another machine learning 
model has been introduced by Correa et al. as a training 
and educational resource for new clinicians and as a means 
of quality control for experienced clinicians. This model is 
helpful in the adequate calibration of the personalization 
of the treatment to obtain the best number of oocytes and 
avoid OHSS[28] (Table 2).

3.7. Optimal day of the trigger

The model suggested by Fanton et al.[30] optimize the day 
of trigger for mature oocytes (MII), fertilized oocytes 

(2PNs), and usable blastocysts. This model can potentially 
improve outcomes for many IVF patients (Table 2). After 
providing input information about the total amount of 
follicles binned by size (<11 mm, 11–13 mm, 14–15 mm, 
16–17 mm, 18–19 mm, and >19 mm) and the estradiol level 
on a given examination day, the number of MII oocytes is 
predicted through two different linear regression models 
corresponding to two distinct scenarios hypothesizing 
triggering the same day and triggering the day after, 
respectively. If the predicted number of MII oocytes “today 
versus tomorrow” shows a decreasing trend, triggering is 
recommended; otherwise, if the number of MII oocytes 
is expected to be higher if triggering the day after, it 
could be worth waiting one more day before updating 
the follicle count and the estradiol level and repeating the 
previous step. A third linear regression model can also be 
used to predict the estradiol level 1 day after. The trigger 
calculation to optimize trigger time and oocyte retrieval is 
a strong advantage in clinical practice.

3.8. The number of oocytes exposed to fertilization

The number of oocytes that should be exposed to 
fertilization during an ART cycle needs to be decided to 
minimize the number of unused embryos and optimize 
the probability of live birth. A  tool for prediction was 
developed during a study on IVF cycles, which can assist 
clinicians in determining the most suitable number of 
oocytes to be exposed to sperm. This can help reduce 
the number of unused embryos generated and effectively 
address any existing concerns of both the patients and 
clinicians involved[31] (Table  2). The optimization of the 
number of oocytes exposed to sperm and the number of 
unused embryos represent a concrete improvement of the 
IVF procedure.

3.9. ART calculator

In IVF/intracytoplasmic sperm injection (ICSI), an ART 
calculator has been developed to estimate the minimum 
number of MII oocytes required for obtaining at least one 
euploid blastocytes for each patient, serving as a useful tool 
for counseling and planning treatments[31,32]. This prediction 
tool is highly beneficial for clinical and embryological daily 
practice. In addition, Jin et al. have created a nomogram 
to predict blastocyst formation rates based on the range of 
clinical characteristics in patients with different types of 
infertility, aiming to minimize the possibility of wasting 
embryos and accurately predict the likelihood of blastocyst 
formation[9]. The patients were categorized into three groups: 
tubal factor, polycystic ovary syndrome, and endometriosis, 
with each group further divided into a training set and a 
validation set. The nomogram was constructed using the 
training set, while the performance of the model was tested 
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using discrimination and calibration on the validation set. 
The models showed satisfactory results, with acceptable 
calibration in each model.

The process of predicting embryo implantation in the 
human endometrium is complicated and involves multiple 
factors[23]. To address this challenge, various algorithms 
have been created to forecast the probability of successful 
embryo implantation[32]. A  new definition of recurrent 
implantation failure (RIF) that accounts for the effects of 
female age and anticipated blastocyst euploidy rates on 
cumulative implantation rates was recently proposed, and 
a calculator has been developed and provided to estimate 
a 95% cumulative implantation probability by taking into 
account the blastocyst euploid rates from published data 
across different female age categories. The estimation was 
done under the assumption of the absence of any other 
factor affecting implantation. However, the assumption is 
not true, as this estimation is a great system to establish 
the focus areas of clinical research in the RIFs after euploid 
embryos transfer (Table 2).

3.10. Endometrial receptivity score

Numerous markers signify the readiness of the 
endometrium for successful implantation, and these 
become apparent during the implantation window. 
At present, transvaginal ultrasound color Doppler is 
a dependable method for displaying the rise in blood 
flow during the peri-  and postovulatory phases and 
objectively evaluating these flows to anticipate endometrial 
receptivity[33-35]. Our view is that none of the individual 
parameters that indicate suitable endometrial conditions 
for embryo nidation can be utilized as a predictive score. 
However, the method to collect all the known parameters 
into a single score, with weighting of each parameter 
determined by a big database collection, may help promote 
a model for predicting implantation of total embryos (both 
euploid and aneuploid) in the endometrium.

3.11. Prediction of IVF program results

Several algorithms can be used to predict the success of IVF 
treatments. A study reported that in women who experience 
unexplained RIF after IVF/ICSI treatment, the cumulative 
incidence of live birth and mean time to pregnancy (through 
conception after IVF/ICSI or natural conception) over a 
follow-up period of up to 5.5 years was 49%. In addition, 
the calculated median time to pregnancy leading to a live 
birth was 9 months after the RIF diagnosis[33-38].

The authors conducted a population-based cohort 
study using data from the Society for ART (SART) 
Clinic Outcome Reporting System[14] to develop IVF 
prediction models. These models estimate the probability 

of cumulative live birth for individual patients at two 
different time points: Pre-treatment (before commencing 
the first complete IVF cycle) and post-treatment (before 
starting a second complete IVF cycle in cases where the 
first cycle was unsuccessful). The pretreatment prediction 
models provide estimates of the probability of achieving a 
live birth over a maximum of three complete cycles of IVF, 
whereas the post-treatment model predicts the probability 
over the second and third complete cycles. A  complete 
cycle is defined as all ETs (both fresh and frozen) resulting 
from one round of ovarian stimulation, and the models 
take into account the first live birth episode, including 
both singletons and multiple births. Unlike previous IVF 
prediction models in the US, which focused solely on 
cumulative live birth rates and excluded cycles involving 
frozen embryos, these innovative models are clinically 
relevant and can assist clinicians and couples in planning 
IVF treatment at different stages of the process[33-39]. Other 
attempts at IVF estimation results are based on couples’ 
profiling and medical center performances as shared with 
their national registers as disaggregate (Table 2).

3.12. Key performance indicators (KPIs), 
performance indicators (PIs), and recommendation 
indicators (RIs)

Through its own working group, the Italian Fertility 
Society and Reproductive Medicine (SIFES-MR) achieved 
consensus on a list of clinical and laboratory KPIs such as 
KPIs, PIs, and RIs useful for internal and external controls 
of ART treatments in IVF settings[12]. Each parameter was 
assigned a score, and the cumulative score resulted from 
the collection of a stratified database of that parameter from 
Italian clinical and laboratory ART programs. Algorithms 
identifying good medical practice and laboratory 
procedures will be built up when the database is consistent 
and the single-step prediction coherent (Table 2).

To further improve this practice for the collective 
benefit, non-aggregated data collection registers are 
increasingly accessible to the use of these algorithms to 
evaluate the individual’s performance compared with 
classes of collectivity given by these databases whose 
reliability is a function of its size[36].

4. Discussion
Evidence suggests that female educational attainment 
is a cofactor of female infertility, although the exact 
mechanisms underlying this relationship are complex and 
multifactorial. One possible explanation is that women 
pursuing higher education levels may delay childbearing 
to focus on their careers or educational goals. As women 
age, their fertility declines, and delaying childbearing 
may increase the risk of infertility due to factors such as 
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decreased ovarian reserve and increased risk of conditions 
such as endometriosis. Another potential explanation 
is that women with higher levels of education may be 
more likely to engage in behaviors that can contribute to 
infertility, such as smoking, excessive alcohol consumption, 
and exposure to environmental toxins.

On the contrary, education may impact access to 
healthcare and reproductive technologies. Women with 
higher levels of education may have greater knowledge 
of and access to fertility treatments such as IVF. In 
comparison, women with lower levels of education may 
face barriers to accessing these treatments, leading to a 
higher risk of infertility. Finally, socioeconomic factors 
such as income and access to healthcare may also play a 
role in the relationship between education and female 
infertility. Women with higher levels of education may have 
higher incomes and greater access to healthcare, which can 
improve their overall reproductive health and decrease 
the risk of infertility. While the relationship between 
female educational attainment and infertility is complex, it 
highlights the need for comprehensive reproductive health 
education and access to fertility treatments for all women, 
regardless of their educational background.

AI can potentially transform infertility diagnosis and 
treatment by enabling more accurate diagnoses, personalized 
treatment plans, and improved patient outcomes. There are 
several algorithms that can be used to predict the success of 
IVF treatments. Here are some of the most common ones:

i.	 Logistic regression: This algorithm is used to predict 
the probability of success or failure of IVF treatments 
based on patient and treatment characteristics. It 
uses a mathematical model to analyze data from 
previous IVF cycles and identify the factors that are 
most predictive of success or failure.

ii.	 Decision trees: This algorithm is used to analyze 
complex data sets and create decision trees that 
map out the most likely outcomes based on 
various factors. In IVF, decision trees can be used 
to predict the probability of success or failure 
based on patient age, ovarian reserve, embryo 
quality, and other factors.

iii.	 Neural networks: This algorithm is designed to 
simulate the function of the human brain and 
can be used to analyze large and complex data 
sets. In IVF, neural networks can be used to 
analyze patient data and identify patterns that are 
predictive of success or failure.

iv.	 Support vector machines (SVM): This algorithm 
is used to analyze and classify data based on 
complex patterns. In IVF, SVM can be used to 
predict the probability of success or failure based 

on patient characteristics and treatment data.
v.	 Random forest: This algorithm is used to analyze 

data sets with many variables and identify 
the most important factors that influence the 
outcome. In IVF, random forest can be used to 
predict the probability of success or failure based 
on patient and treatment characteristics.

These algorithms can be trained using large data sets 
of IVF treatment outcomes, patient characteristics, and 
treatment data. Once trained, they can be used to predict 
the probability of success or failure for a given patient 
based on their individual characteristics and treatment 
plan. These predictions can help doctors to personalize 
treatment plans and improve IVF success rates.

Increasing AI applications in the field of reproductive 
medicine to improve the treatment of infertility are already 
established. Some of the applications are elaborated as follows:

i.	 Oocyte ovarian reservoir estimation: This can 
help fertility specialists to make more accurate 
predictions about the number of oocytes that can 
be retrieved during the IVF cycle.

ii.	 Sperm analysis: AI can analyze and classify sperm 
morphology, motility, and concentration with 
greater accuracy and speed than manual methods, 
improving the diagnosis of male infertility.

iii.	 COS: It is done by predicting the optimal dose 
and duration of gonadotropin administration.

iv.	 Fertilization: AI can help embryologists to 
identify the best quality embryos by analyzing 
various morphological and kinetic parameters of 
the developing embryos.

v.	 Blastulization: AI can help to identify which 
embryos are more likely to develop into blastocysts, 
improving the success rates of IVF treatments.

vi.	 Implantation of human embryo: AI can assist 
fertility specialists in selecting the best clinical 
and embryological parameters to optimize the 
implantation rate.

In the present review, we analyzed the most promising 
applications to improve results and compliance with IVF 
procedures, leaving those without clear validation out of 
our focus[16].

IVF programs require a high degree of laboratory 
efficiency to optimize outcomes and ensure the safety 
of patients. Several algorithms have been developed and 
validated to improve the laboratory efficiency of IVF 
programs, including:

i.	 Time-lapse imaging algorithms: Time-lapse 
imaging algorithms use computer vision 
techniques to analyze time-lapse images of 
developing embryos. These algorithms can 
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predict which embryos are most likely to develop 
successfully, allowing embryologists to prioritize 
these embryos for transfer and reducing the time 
required for manual embryo selection[39].

ii.	 Embryo scoring algorithms: Embryo scoring 
algorithms use machine learning techniques 
to predict the likelihood of successful embryo 
implantation based on a range of factors, such as 
morphological characteristics and developmental 
stage. These algorithms can prioritize embryos for 
transfer and reduce the time required for manual 
embryo selection[39,40].

iii.	 Fertilization prediction algorithms: Fertilization 
prediction algorithms use patient-specific data, 
such as age, hormonal levels, and sperm quality, 
to predict the likelihood of successful fertilization. 
These algorithms can optimize the timing of 
procedures and reduce the time required for 
manual monitoring and intervention[8].

iv.	 Quality control algorithms: Quality control 
algorithms use statistical techniques to monitor 
laboratory performance and ensure the safety 
and accuracy of procedures. These algorithms can 
detect anomalies and deviations from established 
protocols and alert laboratory staff to potential 
issues before they affect outcomes[12].

v.	 Cryopreservation algorithms: Cryopreservation 
algorithms use machine learning techniques to 
predict the likelihood of successful embryo or gamete 
cryopreservation based on a range of factors, such 
as age, hormonal levels, and clinical history. These 
algorithms can optimize the timing and methods of 
cryopreservation and reduce the time required for 
manual monitoring and intervention[41,42].

However, even if these algorithms could still improve 
the laboratory efficiency of IVF programs, reducing the 
time required for manual procedures, optimizing the use 
of resources, and improving outcomes for patients, they 
still do not exhibit evidence of an improvement in the 
procedure’s efficiency. By integrating these algorithms 
into clinical practice, IVF programs could achieve 
higher success rates and provide safer and more effective 
treatment. But still, randomized and controlled trials are 
needed for full validations.

The use of AI in infertility treatment can improve the 
accuracy, efficiency, and success rates of reproductive 
medicine, leading to better patient outcomes and increased 
access to fertility care. We reported available tools and 
algorithms focused to personalize medical efforts.

Specific algorithms have the potential to improve the 
effectiveness and safety of COS by providing personalized 

treatment recommendations, optimizing treatment 
protocols, and predicting responses to treatment. 
However, these approaches are still in the early stages of 
development, and further research is needed to validate 
their effectiveness in clinical practice.

These new instruments are improving the experiences 
of both clinicians and patients, with a larger applicative 
in gamete, embryo selection, and egg/embryo storage. 
Nevertheless, the application of AI in the IVF laboratory 
to streamline patient care is a growing but not yet fully 
realized concept. This is why we still believe that, in 
clinical rather than laboratory, AI applications are more 
immediately useful in medical practice for ART. The 
question of accurately estimating the overall probability of 
a medical outcome resulting from two independent events 
still remains for clinicians. While it is possible to do so in 
certain cases, such diagnostic and prognostic decisions 
often require the consideration of multiple probabilities or 
steps. However, in cases where multiple independent events 
are involved, the misestimation of the overall probability of 
success (known as the conjunction fallacy) is likely to lead 
to diagnostic and prognostic errors[32].

That happens in the diagnosis and treatment of RIF 
where several factors are concurring to the failure, one 
independent from the other[43].

The diagnostic tool by questionnaire of Chapron 
et  al.[21] is a real improvement of the clinical approach to 
this disease because it is able to shorten the first diagnosis 
and accelerate the possible treatment with an improved 
prognostic value for prospective fertility treatment results 
in those women (Table 2). The assessment of male[25] and 
female[26-29] gametes with specific automatic prognostic 
grading allocation according to the production and/or 
reservoir is a substantial help in the clinical management 
of the infertile couple without adding some new potential 
improvement in pregnancy outcome (Table 2). The starting 
dose of gonadotropins in the COS represents a great help in 
the same management, improving the clinical effort in that 
management[28,29], as well as the trigger timing calculation 
that avoids mistakes and delays or anticipation leading 
to reduced oocyte pick up (OPU) efficiency (Table  2). 
There is still discussion about the efficiency of picking up 
and fertilizing the maximal oocytes as possible for each 
aspiration or performing mild stimulation and partial 
fertilization of oocytes. Thus, the model for calculating the 
magic number to maximize results and reduce the number 
of oocytes to pick up remains to be established for efficiency 
contribution and the use of this algorithm, but it is useful 
to follow the concern of clinicians that refuse to collect 
as many embryos as possible in the perspective of better 
efficiency of this procedure[44] (Table 2). The ART calculator 

https://doi.org/10.36922/gtm.0308
https://doi.org/10.36922/gtm.0308


Volume X Issue X (2023)	 9� https://doi.org/10.36922/gtm.0308

Global Translational Medicine Clinical algorithms in ART

Volume X Issue X (2023)	 9� https://doi.org/10.36922/gtm.0308

proposed by Esteves et al. is a great algorithm that gives 
both embryologists and clinicians more information for 
clinical choice orientation[27] (Table 2). The nomograms to 
predict blastocysts rate following cycles of IVF in patients 
with tubal factor infertility, polycystic ovary syndrome, 
or endometriosis is another useful algorithm helping 
the decision-making of the clinician, embryologist, and 
couples together to follow-up on the procedure[9] (Table 2).

The endometrial receptivity estimation based on the 
only parameter of ultrasound and vascularization of 
the endometrium in its own layers is not actually being 
the factor contributing to the endometrial receptivity 
more complex and determined by several independent 
parameters rather than this one. However, the establishment 
of each parameter with its own specific score in a database 
supporting an algorithm inclusive of all those factors is, 
from the methodological point of view, the right direction 
for future studies[34].

An algorithm was developed to predict implantation 
efficiency by taking into account the impact of both female 
age and anticipated blastocyst euploidy rates on cumulative 
implantation rates, as published in a hands-on tool, is very 
attractive. Moreover, despite its estimation of implantation 
for euploid and aneuploid embryos after transfer according 
to the age of the women and the number of embryos 
transferred did not consider the value of the extra embryo 
factors, this tool remains of great value for clinicians[33] 
(Table 2).

The prediction of personalized cumulative live birth 
following IVF as published by MacLernon et al.[37] and 
adopted by the Sars registry and American Society for 
Reproductive Medicine (ASRM)[38] (Table 2) is very helpful 
for all involved in the ART programs, from the couples 
to the medical doctors. The attempt of other algorithms 
proposed for the same finality, which include both the 
couple’s profiling and the medical center’s performances, 
is a great improvement in medical practice for the 
transparency by which the performances are released and 
for the “True” informed consent to undergo IVF program 
in one center instead of the other[36]. Public services 
rather than private companies should provide for that. 
Unfortunately, we assist in medical center’s promotion by 
media with declared results that are not obtainable. This 
phenomenon leads to making money on the emotional 
fragility of these couples. These AI application models can 
reduce a doubly reprehensible practice on a deontological 
and human level. Couples seeking information should 
make it a habit to avoid centers that do not release their 
results as disaggregated and verifiable data to national 
registries in a transparent manner. The study of the Italian 
Group of the SIFES e MR (SocietàItaliana di Fertilità, 

Sterilità e MedicinadellaRiproduzione) focused on the 
Key Performance Indicators (KPI) useful for internal 
and external control of each procedural step of the ART 
programs may improve the quality of the entire procedure 
by generating algorithms establishing the gold standards 
procedures as well as their laboratory and clinicians’ 
coherence[12]. Many other predictive tools are published 
day by day in the literature, such as the natural conception 
prediction application[45] or an AI model developed to 
predict gestational age more accurately than standard 
fetal biometry-based estimates which was achieved by 
utilizing both standard plane ultrasonography images and 
fly-to ultrasonography videos[46]. Moreover, the progress 
in performing studies and AI models are ongoing with an 
enthusiastic perspective for patient management.

5. Conclusion
After an impressive increase from 1960 to 2010, the 
world population is decreasing. The total fertility rate is 
in inverse relationship to the literate couples population 
being lower in the high alphabetization communities. The 
use of infertility treatments by IVF is now a worldwide 
phenomenon, with 2%–8% of newborns using this 
technique. The recent use of mathematical models and/
or real-time monitoring algorithms designed to improve 
the diagnostic power of specific tests as well as the best 
management of the treatments is describing a new clinical 
era where the improvement of efficiency and the reduction 
of complications will be the most evident phenomenon.
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