

RESEARCH ARTICLE

Melt electrowriting-printed peritoneal scaffold prevents peritoneal adhesion and facilitates peritoneal repair

Supplementary File

Figure S1. (A) Laser scanning confocal images of peritoneal mesothelial cells. (A–D) Cells were stained with DAPI (blue), vimentin (red) and PCK (green). Magnification: 200×; Scale bars: 100 µm. (E–H) Cells were stained with DAPI (blue), vimentin (red) and PCK (green). Magnification: 400×; Scale bars: 50 µm.

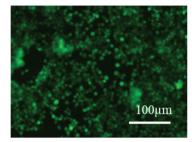
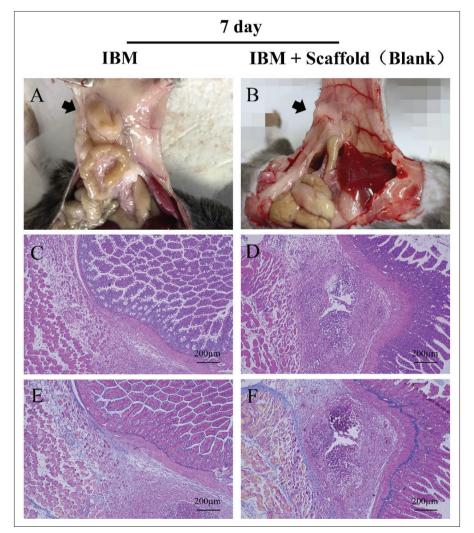



Figure S2. Immunofluorescence detection of the cell-tracker green-labeled peritoneal macrophages.

Figure S3. (A) Peritoneal adhesions model: one ischemic button was created on one side of the parietal peritoneum in male mice by grasping 5 mm of tissue with a hemostat and ligating the base of the segment with a 4-0 silk suture. (B) The scaffold is secured to the peritoneum using 6-0 nylon sutures (Suzhou Medical Co., Ltd, China) to isolate the button and intestinal tube.

Figure S4. Representative photographs of peritoneal adhesions in the group of model and blank groups on day 7 postoperatively. (A) Model: IBM. (B) Blank groups: IBM + scaffold (blank). (C–F) Histological analysis of the lesion sites by HE and Masson staining in the IBM group and scaffold (blank) group on day 7 postoperatively.

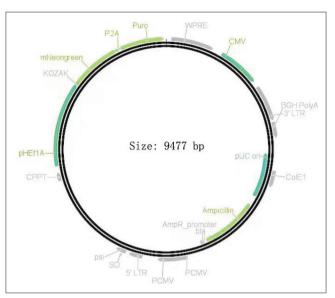


Figure S5. The structure of the *GFP* gene-contained lentivirus (SyngenTech, Beijing, China).