

RESEARCH ARTICLE

A holistic model for melt electrowritten three-dimensional structured materials based on residual charge

Supplementary File

Figure S1. Modes of energy surface evolution under different conditions. Each row represents a mode of evolution, whose conditions correspond to each row in Table S1. α and K are kept at 3 and 1 for all modes, respectively. The blue, orange, and green curves correspond to z_1 , z_2 , and z_3 in Table S1, respectively.

Figure S2. Comparison of lateral characteristic curves when β and N are altered at a constant z. N is the number of layers considered to contribute to the energy surface. The proposed model is generalized herein so that N can be altered. For example, N = 4 means the topmost four layers that are taken into consideration. N = 2 is selected for the proposed model throughout the main text of the study. (A) and (C) show the effect of β when $\beta < 1$ or $\beta > 1$. (B) and (D) show the effect of N when $\beta < 1$ or $\beta > 1$. By comparison (A) and (B) or (C) and (D), when $\beta < 1$, increase of N is equivalent to increase of β . For (A–D), $\alpha = 3$, $\eta = 1$, $\xi = 6$, K = 3, z = 1.5. For (A) and (C), N = 2. For (B) and (D), $\beta = 0.5$ and 2.5, respectively.

International Journal of Bioprinting

Figure S3. Effects of different parameters on vertical energy variation. (A) Schematic of characteristic surface and vertical characteristic curves. Black curves show the vertical characteristic curves at $x = 0.5\xi$, 1.5ξ , and 2.5ξ , which correspond to the prescribed locations and are shown for comparison in (B). (C) and (D) show the effect of *K* and ξ on the vertical characteristic curves at $x = 0.5\xi$. $\alpha = \beta = 3$, $\eta = 1$, $\xi = 60$ for (C), and *K* = 3 for (D).

Supplementary Table

Parameter	β	ξ	η	<i>z</i> 1	<i>z</i> 2	<i>z</i> 3
Mode 3	3	5	1	5	1.8	1.1
Mode 4	3	15	0.1	15	3	1.5
Mode 5	3	3	1	3	1.5	1.1
Mode 6	3	2	0.1	2	1.5	1.1
Mode 7	0.1	2	0.1	2	1.5	1.1