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Abstract
Breast malignancy is a critical problem that severely affects women’s health globally 
with a high-frequency rate, necessitating fast, effective, and early diagnostic methods. 
The present study aims to measure the breast tissue’s optical properties by capturing 
the spectral signatures from malignant and normal breast tissue for therapeutic and 
diagnostic applications. The optical imaging system incorporates a hyperspectral (HS) 
camera to capture the spectral signatures for both the malignant and normal breast 
tissues within 400 ~ 1000 nm. The system was subdivided into two exploratory (reflection/
transmission) to measure the tissue’s diffuse reflectance (Rd) and light transmission 
(Tr), respectively. The study involved 30 breast tissue (normal/tumor) samples from 
30 females in the age range of 46 ~ 72 years, who were optically inspected in the visible 
and near-infrared (VIS-NIR) spectra. Then, the inverse adding doubling (IAD) method 
for breast tissue characterization and descriptive analysis (T-test) was exploited to verify 
the significant difference between the various types of breast tissues and select the 
optimum wavelength. Finally, comparing the study outcome with the histopathological 
examination to evaluate the system’s effectiveness by calculation (sensitivity, specificity, 
and accuracy). The average outcome values demonstrated that the optimal spectral 
bands distinguishing between the normal and the tumor tissues regarding the 
reflectance approach were 600 ~ 680 nm and 750 ~ 960 nm at the VIS and NIR spectrum, 
respectively. Then, for the transmission technique, the optimal spectral bands were 560 
~ 590 nm and 760 ~ 810 nm at the VIS and NIR spectra, respectively. Later, the T-test and 
the IAD verified that the highest Rd values for discrimination were 600 ~ 640 nm and 
800 ~ 840 nm at the VIS and NIR spectra, respectively. On the other side, the highest Tr 
values were 600 ~ 640 nm and 760 ~ 800 nm at the VIS and NIR spectra, respectively. The 
investigation’s average reading accuracy, sensitivity, and specificity were 85%, 81.88%, 
and 88.8%, respectively. The experimental trials revealed that the system could identify 
the optimal wavelength for therapeutic and diagnostic applications through the light 
interaction behavior of the breast tissue’s optical properties.
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1. Introduction
Breast malignancy (BM) is a threatening disease in 
women[1,2]. BM has a high occurrence and mortality rates 
globally[2]. In line with the World Health Organization’s 
recommendation, it is vital to have an effective healthcare 
system for BM diagnosis and therapy[3]. Of all women’s 
tumors, 16% are diagnosed with breast cancer[4]. It is the 
primary source of malignancy-based death in Africa, with 
an elevated rate in low-  and middle-income nations[5,6]. 
Even though the sign of cancer is not selective to 
females, the incidence rate of breast cancer in women is 
multiple times higher than that in men[7]. The malignant-
based death, in one way, is credited to late diagnosis 
as the malignancy has grown in size or metastasized. 
Consequently, early diagnosis is an excellent approach to 
improving the survival rate, which can go up to 95%[8].

Early detection of BM was the objective of multiple 
studies involving imaging modalities[9], such as 
mammograms[10], ultrasound (US)[11], and breast magnetic 
resonance imaging (BMRI)[12]. On the other hand, it is 
limited to several components, for example, the contrast 
noise ratio[13], longitudinal resolution, and signal-to-noise 
ratio of every machine[14]. Researchers have investigated 
numerous breast cancer diagnostic techniques, 
incorporating X-ray mammogram, MRI, US, positron 
emission tomography scan, computerized tomography 
(CT), and tissue removal (biopsy), which are detailed in 
Table S1 (Supplementary File), for the regular breast cancer 
diagnostic approaches and their constraints[15].

At present, tissue sampling is the standard method for 
BM identification. However, it requires acquiring a tumor 
biopsy and then an investigation by a pathologist[16]. In 
addition, tissue sampling involves staining, sample cutting, 
and microscopic investigations, which are time-consuming 
and costly[17].

None of the abovementioned imaging modalities is 
flawless for intraoperative resection of malignant tumors[18]. 
For example, 37% of the women had breast apportioning, 
and the tumor was allocated at the edge of the biopsy[19]. 
In oncology, failure to completely eradicate malignant 
develops cancer recurrence which leads to the spread of 
the disease[20]. Presently, a pathologist, who investigates 
the tissue with a digital microscope, surveys the resection 
edge a couple of days after an operation and following 
this, the pathologist can give a direct examination before 
commencing the treatment[21].

The US Food and Drug Administration approved the 
whole slide imaging (WSI) for the fundamental analysis 
of histopathological slides[22,23]. Computerized radiology 
enables immediate investigation of WSI in routine 

pathology practice. However, there are critical contrasts 
in motivations for appropriating computerized innovation 
in pathology when contrasted with radiology. In digital 
radiology, sensors can straightforwardly catch the data from 
imaging sources. This advanced cycle obviates the need for 
ordinary films, harmful compound preparation, and X-ray 
record rooms. By contrast, slide imaging for pathology 
necessitates that the tissues are prepared in the typical way 
(embedded in paraffin, cut, set on glass slides, and stained). 
Afterward, the pathologist investigates the samples visually 
thru the microscope, which often consumes time and effort 
and relies on clinician experience[24].

Several studies compared the frozen section analysis 
and the imprint cytology involving hematoxylin and 
eosin (H&E) staining examination alone. Motomura et al. 
reported that compared to H&E, imprint cytology analysis 
has an overall accuracy, sensitivity, and the specificity of 
96%, 90.9%, and 98.5%, respectively[25]. Flett et al. stated 
that frozen section analysis accurately predicts axillary 
node status with 95%[26]. Moreover, Van Diest et al. stated 
that frozen section examinations were better than imprint 
cytology analysis (sensitivity 91% versus 63%), and 
specificity for both methods was 100%[27].

Hyperspectral imaging (HSI) is also called imaging 
spectrometry and chemical imaging[28]. HSI has 
advantages over multispectral and RGB imaging because 
it captures tens to hundreds (continuous spectrum) 
along the electromagnetic spectrum. HSI collects spatial 
information (x, y), and a spectral wavelength called a data 
cube, with each pixel, provides a specific spectral signature 
based on the reflection, transmission, and absorption 
of electromagnetic radiation for each material under 
examination[29]. HSI coordinates ordinary imaging and 
spectroscopy modalities to provide spatial and spectral 
information about the object of interest[30,31]. Spectrometry 
imaging had been exploited in land scanning remotely 
since 1985[32].

As an imaging methodology for clinical applications, 
HSI offers extraordinary potential for noninvasive 
diagnostic and surgical navigation[33]. Several studies 
highlight the novelty of the HSI in medical applications, 
For example, Fabelo et al. used an intraoperative imaging 
system utilizing HSI to assist in brain tumor delineation to 
differentiate between normal and cancer tissue in the brain 
during a neurosurgical operation[34]. In addition, Goto 
et al. implemented a study to recognize gastric tumors 
in ex vivo human tissues[35]. Furthermore, Regeling et al. 
utilized flexible endoscopy combined with an HSI system 
to discriminate laryngeal cancer to acquire HS cubes in 
the region within 390 ~ 680  nm[36]. Moreover, HSI had 
been exploited in monitoring the thermal ablation in the 
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biological tissue[37,38], sketching of the blood vessels in the 
arm to aid with Phlebotomy and tissue oxygen[39,40], and 
breast cancer investigation and malignancy detection[41-43].

The expansion of optical systems in current medical 
sectors in therapeutic, diagnosis, and surgery regions 
has motivated the research on optical properties of 
numerous biological tissues. At the same time, the 
effectiveness of laser therapy varies by photon propagation 
and spreading fluence rate inside irradiated tissues[44]. 
Moreover, the ability to image a biological sample 
deeply is limited by light penetration depth inside the 
biological tissues, as distinguished by high turbidity[45]. 
Regarding the optical properties of the biological tissues 
(comprising blood, lymph, and other biological fluids), 
it had been classified into two classes: (i) opaque tissues 
(intensely scattering) such as the brain, skin, blood, and 
vascular walls; and (ii) translucent tissues (inadequately 
scattering) such as the cornea and anterior eye chamber 
lens[46]. The light interaction (reflection, scattering, and 
absorption) with the investigated biological soft tissue 
varies concerning the optical properties variation of its 
fundamental characteristics, is presented in Figure S1 
(Supplementary File).

In this study, we designed an optical imaging system 
incorporating the hyperspectral (HS) camera to acquire a 
fast and effective method for breast tissue characterization 
by capturing the spectral signatures of the malignant and 
normal breast tissues for both investigative and therapeutic 
objectives. The exploited optical imaging had been divided 
into two separate setups (Reflection/Transmission) 
with spectral range of 380 – 1050  nm to measure the 
tissue’s diffuse reflectance (Rd) and light transmission 
(Tr), and then the sample absorption coefficient (µa) was 
calculated from Tr. Then, from the measurements of the 
previously stated parameters for both the normal and the 
malignant breast tissues, we exploited the inverse adding 
doubling (IAD) method for breast tissue characterization. 
Furthermore, the T-test was utilized to verify the significant 
difference between the various types of breast tissues 
and select the optimum wavelength for diagnosis and 
therapy applications. Finally, the proposed methods with 
histopathological examination were compared to evaluate 
the system’s effectiveness in terms of sensitivity, specificity, 
and accuracy.

2. Materials and methods
2.1. Primary system interconnections

The primary system interconnections include the following:
•	 The design and implementation of the optical imaging 

system
•	 The optical phantoms and system calibration

•	 The investigation and patient criteria for breast tissue 
samples selection and preparation

•	 Capturing the HS image for the ex vivo breast samples
•	 The measurement of the sample’s diffuse reflection (Rd) 

for both the cancerous and the non-cancerous regions
•	 The measurements for sample Tr
•	 Calculating the sample absorption coefficient (µa) 

from the measured Tr
•	 The statistical analysis to select the optimum wavelength 

for the diagnostic and therapeutic applications
•	 Calculating the system efficiency (average reading 

accuracy, sensitivity, and specificity).

2.2. Design and implementation of the optical 
imaging system

The principal structure of the proposed framework 
is partitioned into two different configurations. The 
first configuration (reflection approach) utilizes a 
polychromatic source light (Derungs, 20P SX  -20 Watt, 
Germany) with a spectral range (400 ~ 950  nm) to 
measure the Rd of the investigated ex vivo breast samples, 
as illustrated in Figure 1A for the schematic diagram and 
Figure 1B for the actual setup[47]. The second configuration 
(transmission approach) employs the same light source. 
However, underneath the investigated samples for light Tr 
measurement, these measurements yield the calculation of 
the µa, as presented in Figure 1C for the schematic diagram 
and Figure 1D for the actual setup.

Both configurations exploit the HS camera (Surface 
Optics, SOC710, USA) at 400 ~ 1000 nm, with a spectral 
resolution of 4.69  nm and a bit depth of 12, which is 
equipped with an objective lens (Schneider, 400 – 1000 nm, 
Germany). The employed HS camera is a push broom 
imager with scanned cube 128 frames which has a built-in 
translation sensor capable of directly collecting information 
for the entire spatial image of the whole object. The camera 
was settled at a height of 20 cm, and the light source was 
16  cm from the breast samples. The light was settled at 
the same distance under the samples in the transmission 
configuration. The signal analysis measurements were 
analyzed with software (SOC’s Hyperscanner and 
SRAnalysis, USA) accompanied by (DADiSP, SE 6.7, USA) 
on a personal laptop (DELL, INSPIRON 5584, Intel Core 
I7, 16 GB RAM, Windows 10, USA) where the actual setup 
with all of its components is displayed in Figure 1.

2.3. Optical phantom preparation and system 
calibration

Initially, we prepared liquid optical phantoms for system 
calibration. Then, we used demineralized water as a matrix 
material and added milk (whole milk, lactose-free, and 
fat-free) as the scattering material with three different 
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fat concentrations (3%, 1.75%, and 0%). Samples were 
arranged in a 300 mL beaker, mixing the milk with the water 
to achieve various lipid concentrations (0.1% ~ 1%, with 
increments of 0.05%). Moreover, the exploited absorption 
material was a red Indian ink (Speedball, Statesville, USA) 
with whole fat milk (3% of fat concentration). Mixture 
was prepared by adding 200 mL from the ink with 0.2 mL 
of milk at concentration range (0.005% ~ 0.2%). The ink 
concentration was constant at 0.1% with 200 µL dilution 
in 100  mL of demineralized water. Milk was added to 
the mixture with a syringe of 5  mL of lipid at various 
concentrations (0.1% ~ 0.5%)[48,49].

2.4. Patient criteria and sample preparation

The current trial examination was approved by the 
Institutional Ethical Committee. In addition, all patients 

read and signed the consent form before data collection 
began. The study was conducted from May 2020 to October 
2021 with a total of 30 female patients who were diagnosed 
with breast cancer by two different imaging methods 
(mammogram/US) and had underwent mastectomy; 
the patient data for the present study are summarized in 
Table S2 (Supplementary File).

The breast tumor samples, which had been classified 
by the pathologists, were processed at the pathological 
center and then attached with the complete histology 
lab report for each patient. The breast samples were cut 
by the pathologist into various sizes around 10 ~ 12 cm2 
with a thickness of 4 ~ 5 mm. One of the team members 
transported samples in an icebox. During the experimental 
investigation, samples were dipped in phosphate-buffered 
saline (pH = 7.4) to remove blood. After scanning, the 

Figure 1. (A) The schematic diagram of the reflection setup. (B) The actual reflection setup to measure the tissue’s diffuse reflectance (Rd): (1) the HS 
camera, (2) the polychromatic source light, (3) the investigated breast samples, and (4) the computer and the image software analysis. (C) The schematic 
diagram of the transmission setup. (D) The actual transmission setup to measure the tissue’s light transmission (Tr).

A B

C D
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samples were stored in a freezer at a temperature of −75°C. 
The experimental trials were conducted in a lab with room 
temperature of ~25°C.

2.5. Principal theory and procedure equations

The proliferation of incident light inside tissue is 
a significant issue in clinical applications and the 
improvement of diagnostic techniques. This way, this 
segment is committed to a concise audit of the light tissue 
collaboration systems, optical cycles included in HSI, 
and valuable diagnostic and therapeutic data provided by 
HSI[33]. Light entering biological breast tissue goes through 
multiple scattering and absorption as it proliferates across 
the tissue[50]. Biological tissues are assorted in composition 
through spectral distinctions in optical properties. 
Scattering appears where there is a spectral distinction in 
the refractive index[51].

The diffusion profundity of light into biological tissues 
depends on how unequivocally the tissue absorbs light. 
Most tissues are adequately powerless absorbers to allow 
substantial light diffusion inside the therapeutic window, 
going from 600 to 1300 nm. Inside the therapeutic window, 
scattering is higher than absorption, so the spreading light 
gets diffuse[50,51]. The primary block diagram of the two 
applied system approaches (reflection and transmission) is 
illustrated in Figure 2.

Light proliferation in investigated tissue depends on 
the transport hypothesis[52,53]. Transport theory depends 
on the superposition of energy flux, so the wave properties 
of light (polarization and interference) are not considered 
in transport theory. Where the radiant power of the light 
transferred to the surface is displayed in Equation I:

Ŗ= ∫ Ƒ.ռ dA� (I)

Where (Ƒ) is the flux vector, (Ŗ) is the radiant power 
transferred through a surface with the area (A).

As the surface of the biological tissue is not 
homogeneous leading to light proliferation. However, it 
is crucial to understand a few of the significant optical 
parameters which are exploited in modeling of the light 
proliferation, such as the propagation of photons, fluence 
ratio, radiance, and flux[54].

The photon allocation function Ɲ ( ) is defined as the 
number of photons for each unit volume moving in the 
course of a unit vector , in the component of fixed angle 
incorporating  at a specified spot ŗ divided by this 
component. The power of photons (β) that proliferate 
through minute area  in the minute fixed angle ( dw ) in 
the course of , with energy հν and speed Śt is shown in 
Equation II:

� (II)

Where (Śt) is the speed of light in tissue and ( ) is 
perpendicular to .

Very often, the operating mechanism of medical 
techniques exploits the relations of light spreading 
through tissue. The quantity of light could be stated as the 
irradiance Ḝ0, which is the radiant energy flux of the surface 
element divided by surface area. Part of the incident light 
is reflected, and the others are attenuated with the tissue 
by diffuse reflection and absorption according to the Beer’s 
law, as shown in Equations III and IV.

� (III)

Where ⱷ (Ḽ) is the fluence ratio for the unscattered 
beam at location (Ḽ) Ḝ0 is the irradiance, and Ŗ is the 
surface reflection (Fresnel).

� (IV)

Where Rd is the scattering (diffuse reflection) coefficient, 
μa is the absorption coefficient, μt is the total attenuation 
coefficient, and ψ is the penetration depth.

While light travels within the tissue, its intensity 
gradually weakens, in a phenomenon known as light 
absorption and expressed by μa, which is described as the 
probability of photon absorption after being proliferated 
per unit length. The light absorption follows the Lambert-
Beer law. Therefore, when there are only light absorption 
phenomena of tissue, it could be expressed by Equation 
V. Additionally, the optical homogenous scattering 
phenomena follows Lambert-Beer law and could also be 
expressed by Equation VI[55].

I I e ad= −0� µ � (V)

I I e sd= −0� µ � (VI)

Where μa is known as the absorption coefficient, I0 
is the incident light, I is the light intensity after passage 
through the medium or tissue, and (µS) is the scattering 
coefficient.

The incident light beam interaction with the biological 
tissues is evaluated in terms of Tr, Rd, and calculated 
absorption coefficient (µa)

[54], using Equations VII and 
VIII:

� (VII)

� (VIII)
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Where 
 
and  are the measured light intensity 

by Rd/Tr with the investigated breast tissue and the typical 
white plate reflection, respectively. The  demonstrates 
the background light intensity discriminated by Rd/Tr 
without the sample reflection on the plate.

2.6. Spectral arrangement

The hyper spectral images were taken for every investigated 
breast tissue sample from the two different arrangements 
as explained previously with spatial pixels (max/
nominal) = 1040/520, spectral channels = 128, HS cube 
captured 100 frames/s within 6.96  s/cube. They applied 
statistical analysis for the spectral signature for selecting 
the optimum spectral range to discriminate the normal 
from the abnormal tissue.

It is essential to capture two data cubes each time a 
breast sample is imaged: the first one is the dark data cube 
which represents the image sensor’s dark current, and the 
second one is for a standard white reference for spectral 
calibration[56]. First, the acquired dark cube was taken by 
closing the lens of the HS camera with its cap. The data 
of the dark and white cubes were exploited to adjust the 
reflected sample image to remove the noise impacts of the 
investigated sample tissue, as expressed in Equation IX:

� (IX)

Where  is the relative reflectance of the 
investigated sample image,  is the seized image, 

 is the opaque image cube, and  is the attained 
image of the white reflectance board.
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2.7. Statistical analysis

So far, the commonly used methods to calculate the 
scattering and absorption properties of the various 
mediums are:

(i)	 Monte Carlo (MC), which is a general class of 
computational algorithms to achieve a numerical 
outcome by relying on random sampling. MC in the 
optical field is effective for a broad range of light µa, 
µs, and photon paths[57].

(ii)	 Diffuse approximation (DA), which is an alternative 
calculation method to calculate the scattering and 
absorption properties of turbid mediums[58].

(iii)	IAD, which is an extended method from the adding 
double (AD) method, and exploited to solve the 
radiative transport equation in the optical field sector 
related to the light’s interaction with the tissues in a 
slab geometry[59].

The radiative transport equation could be used to 
achieve light intensity distribution for the physical 
mediums, as shown in Equation X[60].

dI r s
ds

I r s p s s I r s da s
s,

, , ,
( )

= − +( ) ( ) + ( ) ( )′ ′∫µ µ
µ
4

4
π

θ
π

�

� (X)

Where I (r,s) is the measured intensity per unit length, 
r is the target location, s is the unit direction vector, 
p s s, ′( )  is the phase function, and θ is the solid angle.

Although there is no analytical solution for Equation X, 
it is achievable by exploiting the MC technique[61,62]. 
Moreover, the IAD method is used to solve the radiative 
transport equation. IAD technique and MC model have 
offered more precise approximations of optical properties 
for the biological tissue (µa, µs, g) better than other methods. 
Two dimensionless quantities are exploited in the whole 
process of the IAD, that is, the albedo (a) and the optical 
depth ( ), which are well-defined in Equations XI and XII:

a s

s a
=

+
�

�
µ

µ µ
� (XI)

 = +( )t s aµ µ� � (XII)

Where is the sample’s thickness (mm), the measured 
values of Rd, the total diffuse transmittance (Td), and the 
unscattered collimated transmittance (Tc) are applied to 
the IAD process to calculate the (µa, µs).

Due to the minimum computational time and high 
accuracy comparable to both DA and MC methods, we 
exploited in our system the IAD method for breast tissue 
characterization and descriptive analysis (T-test) to verify 

the significant differences among the various types of 
breast tissues and to select the optimum wavelength.

2.8. System efficiency analysis

The efficiency of the presented system analysis methods is 
achieved by comparing the outcomes with the histological 
investigations. Regarding the results of these comparisons, 
three numerical values (sensitivity, specificity, and accuracy) 
could be measured to evaluate the various spectral analysis 
methods, as shown in Equations XIII, XIV, and XV:

Sensitivity
TP

TP FN
=

+
� (XIII)

Specificity
TN

TN FP
=

+
� (XIV)

�

� (XV)

Where true positive (TP) is the cases detected by the 
proposed system as actual masses (tumors); false negative 
(FN) is the cases of the system which had not been detected 
and have masses; true negative (TN) is the cases detected 
by the proposed system as normal, and they are normal 
cases; and false positive (FP) is the cases mistakenly 
detected by the presented system as abnormal masses, and 
they are normal cases.

3. Results
Our primary goal of these assessments is to investigate the 
optical properties of the ex vivo breast samples (normal/
tumor) by identifying the spectral signatures through 
incorporating the HS camera capabilities to provide the 
essential data for diagnostic and therapeutic applications 
concerning breast cancer. We set up two diverse 
frameworks (reflection/transmission) methods using the 
HS camera at wavelength range (400 ~ 1000 nm) and with 
a polychromatic light source in the VIS-NIR range for this 
examination.

We initially exploited the first framework (reflection 
method) to measure the investigated ex vivo breast tissue 
sample’s light Rd; one of the investigated cases is presented 
in Figure  3. The solid red line represents the measured 
tumor tissue’s Rd spectrum, and the solid blue line identifies 
the normal tissue’s Rd spectrum over the VIS-NIR range. 
From the measured light Rd for the investigated samples, 
we could visually highlight the spectrum peaks, which 
distinguish between the normal and the tumor tissues at 
wavelength range 600 ~ 680 nm and 750 ~ 960 nm at the 
VIS range and NIR range, respectively.
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Moreover, regarding the second framework 
(transmission method) to measure the investigated ex vivo 
breast tissue sample’s light Tr, one of the investigated cases 
is presented in Figure 4. The solid red line represents the 
measured tumor tissue’s Tr spectrum, and the solid blue 
line identifies the normal tissue’s Tr spectrum over the VIS-
NIR range. From the measured light Tr for the investigated 
samples, we could visually highlight the spectrum peaks 
that distinguish between the normal and the tumor tissues 
at wavelength range 560 ~ 590 nm and 760 ~ 810 nm at the 
VIS range and NIR range, respectively.

From the two frameworks, we could measure the 
tissue’s Rd and light Tr, and then calculate the sample µa 
from the measured Tr. Then, from the measurements of 
the previously stated parameters for both the normal and 
the malignant breast tissues, we could identify a spectral 
signature for each tissue type by investigating the optical 
spectroscopy in the VIS-NIR range for the measured light 
Rd and Tr. The measured tissue’s Rd, Tr, and calculated µa 
of the investigated ex vivo breast samples are illustrated in 
Figure S2A-C (Supplementary File), respectively.

Later, we exploited the IAD method for breast tissue 
characterization and the descriptive analysis (T-test) to 
verify the significant difference between the various types 
of breast tissues and select the optimum wavelength. From 
the T-test and the IAD regarding the measured Rd, we 
could verify that the highest Rd values for discrimination 
were 600 ~ 640  nm at the VIS range and 800 ~ 840  nm 

at the NIR range, with the minimum tolerance error, as 
shown in Figure 5.

On the other side, the highest Tr values were 560 
~ 600  nm at the VIS range. Since the tolerance error 
was high in tumor measurements, it was better to select 
the wavelength range of 600 ~ 640 nm at the VIS range. 
Meanwhile, the wavelength range of 760 ~ 800  nm at 
the NIR range was with the minimum tolerance error, as 
shown in Figure 6.

Finally, we compared the system outcome with the 
pathological reports to evaluate the system efficiency and 
calculate the three numerical values (sensitivity, specificity, 
and accuracy). Where, the corrected prediction of the 
system (TP and TN) is compared with the pathological 
report for each region (malignant in red color and non-
malignant in blue color), as shown in Figure 7A. Figure 7B 
shows the receiver operating characteristic (ROC) curve 
data illustrating the normal and tumor data to highlight the 
effect of the cut-off point on decision-making concerning 
the designed machine learning model. Figure  7C shows 
the ROC curve to highlight the test’s sensitivity (TP rate) 
and specificity (FP rate) at various cutoff values.

4. Discussion
BM is the second most common cancer in women after 
skin cancer globally[63]. BM is a threatening disease in 
both incidence and mortality rates. Therefore, early 

Figure 3. The measured light Rd spectrum for one of the investigated samples (patient ID 1009). The solid red line is for the measured tumor tissue’s light 
Rd spectrum, and the solid blue line identifies the measured normal tissue’s Rd spectrum highlighting the peaks which could visually identify between both 
normal and tumor tissues at wavelength ranges of 600 ~ 680 nm and 750 ~ 960 nm at the visible and near-infrared spectra, respectively.
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Figure 4. The measured light Tr spectrum for one of the investigated samples (patient ID 1009). The solid red line is for the measured tumor tissue’s light 
Tr spectrum, and the solid blue line identifies the measured normal tissue’s Tr spectrum highlighting the peaks which could visually identify between both 
normal and tumor tissues at wavelength ranges of 560 ~ 590 nm and 760 ~ 810 nm at the visible and near-infrared spectra, respectively.

Figure 5. The chart analysis of the inverse adding doubling method associated with the T-test for the measured diffuse reflection (Rd) signatures of the 
investigated ex vivo breast samples from both the normal and breast tumor at the visible and near-infrared (VIS-NIR) spectrum range (400 ~ 1000 nm), 
with resolution of 40 nm over twelve groups, where the highest Rd values for discrimination were 600 ~ 640 nm at the VIS range and 800 ~ 840 nm at the 
NIR range, with the minimum tolerance error.
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diagnosis is vital for life-saving[64,65], which could go up 
to 95%[8]. Breast-conserving surgery (BCS) is a common 
therapy. However, clear surgical margins are vital to avoid 
cancer recurrence. Additionally, intraoperative pathologic 
diagnostic techniques, such as imprint cytology and 
frozen section analysis, are well-known essential tools 
in BCS. In addition to the traditional methods, there are 

also modern methods, which have various advantages and 
disadvantages (Table 1)[66].

Recently, there has been a rapid development in the 
research of optical methods in the biomedical field sector, 
leading to a growing number of commercial diagnostic 
and therapeutic methods. The HSI is a capable non-
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Figure 6. The chart analysis of the inverse adding doubling method associated with the T-test for the measured light transmission (Tr) signatures of the 
investigated ex vivo breast samples from both the normal and breast tumor at the visible and near-infrared (VIS-NIR) spectrum range (400 ~ 1000 nm), 
with resolution of 40 nm over twelve groups, where the highest Tr values for discrimination were 600 ~ 640 nm at the VIS range and 760 ~ 800 nm at the 
NIR range, with the minimum tolerance error.
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invasive, non-ionizing method that encourages fast 
achievement and analysis of diagnostic data in the medical 
field[67]. McCormack et al. proposed an optical imaging 
system incorporating the HS camera, which was capable 
to map oxygen saturation, vessel density and branching 
in cancer microvasculature with high resolution to 
successfully computing malignant microvascular response 
on anti-cancer therapy over a long period of time[68]. In 
addition, Kim et al. proposed an algorithm to extract 
the region of interest (ROI) from the HS images of BM 
samples instead of the visual or manual inspection[69]. 
Moreover, Pourreza-Shahri et al. suggested a classification 
algorithm to identify the BM margins in the HS images 
with a sensitivity of 98% and a specificity of 99%[70].

Globally, up to 40% of the BCS necessitate additional 
surgical procedures due to positive resection margins. 
Therefore, numerous researchers propose techniques to 
reduce this value by assessing the resection margins in real 
time using the HSI system during surgery[71]. The novel 
techniques in breast cancer investigation exploiting the 
HSI are briefly depicted in Table S3.

Figure 3 illustrates the first approach of measuring the 
Rd of the investigated ex vivo breast tissue samples. The 
solid red line represents the measured tumor tissue’s Rd 
spectrum, and the solid blue line represents the normal 
tissue’s Rd spectrum. We noticed from the graph plot that 
we could visually differentiate between the tumor and the 
normal tissue at wavelength range of 600 ~ 680 nm and 750 

Figure 7. (A) The system outcome where the tumor samples illustrated in red font and normal samples in blue font versus the estimation differences to 
show the correct prediction and the missed diagnosis in each trial. (B) The receiver operating characteristic (ROC) curve data which represent the normal 
and tumor data to highlight the effect of the cutoff point on decision-making concerning the designed machine learning model. (C) The ROC curve 
demonstrating the sensitivity (true positive rate) and specificity (false positive rate) of the test at various cut-off values.

A B C
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~ 960 nm at the VIS and NIR ranges, respectively. Then, 
from the second framework, we could measure the light Tr, 
and from the graph, we could visually distinguish between 
the normal and the tumor tissues at wavelength range of 
560 ~ 590 nm and 760 ~ 810 nm in the VIS range and NIR 
range, respectively.

From the two methods (reflection/transmission), we 
could calculate the sample µa from the measured Tr. Then, 
we could identify a spectral signature for each tissue type 
in the VIS-NIR range from the measurements of the 
previously stated parameters for both the normal and the 
malignant breast tissues. The measured light tissue’s Rd, Tr, 
and calculated µa of the investigated ex vivo breast samples 
are illustrated in Figure S2A-C (Supplementary File), 
respectively.

Furthermore, we exploited the IAD method for 
breast tissue characterization and the T-test to verify the 
significant difference among the various types of breast 
tissues and to select the optimum wavelength. From the 
T-test and the IAD regarding the measured Rd, we could 
verify that the highest Rd values for discrimination were 
600 ~ 640 nm at the VIS range and 800 ~ 840 nm at the 
NIR range, with the minimum tolerance error, as shown 
in Figure 5. On the other side, the highest Tr values were 
590 ~ 600 nm at the VIS range. Since the tolerance error 
was high in tumor measurements, it was better to select 
the wavelength range of 600 ~ 640 nm at the VIS range. 
Meanwhile, the wavelength range of 760 ~ 800  nm at 
the NIR range was with the minimum tolerance error, as 
shown in Figure 6.

Finally, to evaluate the system efficiency, we compared 
the system outcome versus the pathological reports to 
calculate the corrected prediction (TP) and the incorrect 
prediction (FP), alongside the FN and TN. Regarding these 

values, we could plot the ROC curve and determine the 
system performance (accuracy: 85%; sensitivity: 81.88%; 
and specificity: 88.8%).

5. Conclusions
The current study showed that the potential and capabilities 
of HS camera in providing a rapid and non-invasive 
method to measure the breast tissue’s optical properties 
by capturing the spectral signatures from the malignant 
and normal breast tissue and to distinguish between them 
in both the diagnostic and therapeutic applications. The 
light traveling through tissue was exposed according to 
two parameters, Rd and µa, which depend on the optical 
properties of the breast tissue. Finally, we conclude from 
the Rd measurements of the investigated breast samples, 
that wavelength ranges 600 ~ 640 nm and 800 ~ 840 nm 
are the optimum ranges to identify the cancerous and 
non- cancerous regions regarding the diagnostic purpose 
at the VIS, and NIR spectrum. However, from the Tr values 
(therapeutic applications), the ideal wavelength ranges 
were 600 ~ 640  nm, and 760 ~ 800  nm. In the present 
study, the average accuracy, sensitivity, and specificity were 
85%, 81.88%, and 88.8%, respectively. In future work, we 
intend to explore this direction in infrared band using a 
commercial and low-cost spectral detector to calculate the 
optimum wavelength with the highest Rd value to develop 
an alternative low-cost and rapid diagnostic technique of 
breast cancer.
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Imprint cytology [72] Simple Fast Cost-effective √ ×
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H&E associated with artificial intelligence [73] Complex Fast Cost-effective × √
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Radiofrequency spectroscopy [79] Simple Fast Cost-effective √ ×

Bioimpedance spectroscopy [80] Simple Fast Cost-effective √ ×

HSI attached with standard microscope and deep learning [81] Complex Fast Cost-effective √ ×
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