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Abstract
A database linking process parameters and material properties for additive 
manufacturing enables the performance of the material to be determined based on 
the process parameters, which are useful in the design and fabrication stage of a 
product. The data, however, are often incomplete as each individual research work 
focused on certain process parameters and material properties due to the wide range 
of variables available. Imputation of missing data is thus required to complete the 
material library. In this work, we attempt to collate the data of Ti6Al4V, a popular alloy 
used in aerospace and biomedical industries, fabricated using powder bed fusion, or 
commonly known as selective laser melting (SLM). Various imputation techniques 
of missing data of the SLM Ti6Al4V dataset, such as the k-nearest neighbor (kNN), 
multivariate imputation by chained equations, and graph imputation neural network 
(GINN) are investigated in this article. It was observed that kNN performed better in 
imputing variables related to process parameters, whereas GINN performed better in 
variables related to material properties. To further improve the quality of imputation, 
a strategy to use the median of the imputed values obtained from the three models 
has resulted in significant improvement in terms of the relative mean square error. 
Self-organizing map was used to visualize the relationship among the process 
parameters and the material properties.

Keywords: Additive manufacturing; 3D printing; Selective laser melting; Powder bed 
fusion; Machine learning; Data analytics; Imputation

1. Introduction
Ti6Al4V is one of the most popular titanium alloys given its excellent material properties, 
including high strength, low density, and high corrosion resistance, and is used in a wide 
variety of industries, such as in aerospace for aircraft components and in biomedical 
for implants[1]. Instead of using traditional manufacturing methods, selective laser 
melting (SLM) of Ti6Al4V allows for more complex parts to be created. It is an additive 
manufacturing technique, categorized as powder bed fusion (PBF), which involves 
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melting layers of powder to form functional parts using 
computer-aided design (CAD) software which allows for 
freedom of design[2]. The SLM process is influenced by a 
set of process parameters; however, the number of these 
parameters is not clearly defined. The most influential ones 
are shown in Figure 1.

Typically for a material to be established as processable 
by SLM, parametric studies are needed to optimize the 
parameters to obtain defect-free and fully dense parts. These 
parameters may differ from one machine to another and 
between materials. The common parameters studied are the 
laser power, laser scanning speed, hatch spacing, and powder 
layer thickness. In particular, the laser power controls the 
amount of energy that irradiates the material while hatch 
spacing which defines the distance between two laser scans 
and it should provide enough overlap between adjacent scan 
tracks to bonds. Controlling the bed density in SLM can 
be challenging as it depends on several factors, such as the 
powder size and shape, the recoating process, and the initial 
bed leveling. The bed density can affect the heat transfer 
during the melting process and the resulting microstructure 
and mechanical properties of the printed parts.

One of the attractive points of SLM Ti6Al4V is that 
the material properties can be tuned by optimizing the 
SLM process parameters. For instance, by adjusting the 
scanning speed and hatching distance, Roudnicka et al. 
investigated various energy density values ranging from 
40 to 400  J/mm3[3]. Their results showed that porosity 
and mechanical properties can be significantly altered by 
adjusting the parameters, and suggested a processing range 
for achieving the highest relative density. Furthermore, it 
was found that modifying the energy density may cause 

microstructural changes, which can affect the mechanical 
properties of the final product. Different processing 
conditions will result in different microstructures and 
mechanical properties. For instance, the microstructure 
of SLM-produced bulk samples consists of needle-shaped 
α’-martensite phase[4]. Heat treatment promotes the 
formation of free α- and β-phases at grain boundaries. The 
samples possess high strength but low ductility prior to 
heat treatment. Heat treatment enhances their mechanical 
properties at both ambient and elevated temperatures. The 
previous studies have researched the process-properties 
relationships for SLM Ti6Al4V but have focused only on a 
few properties in their studies: physical properties such as 
relative density[5-9], or mechanical properties such as tensile 
strength and Young’s modulus[10-14].

Other studies that have carried out parameter 
optimization or modeling for Ti6Al4V do not investigate 
the full range of process parameters and only involve a 
few material properties. Sun et al.[15] and Kuo et al.[6] have 
investigated the relationship between process parameters 
and the density of the SLM Ti6Al4V. The former varied 
laser power, scanning speed, layer thickness, hatch spacing, 
and scanning strategy to obtain specimens with maximum 
density, while the latter varied laser power, exposure 
duration, and point distance and reported the porosity 
of the printed specimen. Bartolomeu et al.[16] studied 
and modeled the effects of laser power, scan speed, and 
hatch spacing on the density, hardness, and shear strength 
of SLM Ti6Al4V. More research have been conducted 
to understand the fatigue behavior of SLM-fabricated 
Ti-6Al-4V[17], which may differ from the behaviors under 
static loading.

Figure 1. Influential parameters that affect the quality of the part fabricated by selective laser melting.
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Machine learning in 3D printing is growing rapidly and 
has been used to perform process and design optimization, 
anomalies detection, etc.[18]. It relies heavily on the dataset 
to train a good machine learning model to have good 
prediction. Given the vast number of literature investigating 
the process parameters’ effects on the different properties 
of SLM Ti6Al4V, there is potential in collating the data 
and using machine learning to perform data analytics on 
the dataset to determine the process-structure-properties 
relationship. There are missing values present in the 
collated SLM Ti6Al4V dataset as each property/parameter 
has been studied in isolation, but the quantity of data is 
insufficient for machine learning; therefore, imputation is 
required to bolster the data volume. Hence, the data from 
the literature are considered incomplete, and imputation of 
the missing data is required as a pre-processing step before 
subsequent analysis can be carried out.

Researchers have utilized various kinds of techniques 
to impute missing data in manufacturing processes. 
For instance, Steiner et al. aimed to develop real-time 
predictive models of two key strength properties of a 
wood composite manufacturing process using real-time 
process and destructive test data collected from a wood 
composite manufacturer[19]. However, sensor malfunction 
and data “send/retrieval” problems lead to null fields 
in the company’s data warehouse, which resulted in 
information loss. To overcome this challenge, two missing 
data imputation methods, expectation-maximization 
(EM) algorithm and multiple imputation (MI) using 
Markov Chain Monte Carlo (MCMC) simulation, were 
used to impute the missing data. Predictive models 
based on the imputed datasets generated more precise 
prediction results than models of non-imputed datasets. 
In addition, Bayesian Additive Regression Tree (BART) 
produced the most precise prediction results among four 
predictive modeling methods. In another work, Wang 
et al. discuss the importance of data mining in intelligent 
manufacturing and introduce an energy monitoring 
platform for small-  and medium-sized enterprises that 
records energy consumption data at various levels of 
granularity[20]. However, incomplete data can lead to an 
inaccurate portrayal of the system, so Wang et al. propose 
a novel orthogonal-least-square-based autoencoder to 
generate new samples for the imputation of missing 
values. The proposed approach outperforms alternative 
methods significantly for missing ratios >0.05 based on 
experimental results using real industrial datasets.

There are many data imputation strategies, from 
simple statistical methods such as mean imputation and 
regression imputation to more complex methods such as 
hot-deck imputation, which imputes the missing data by 

realistic scores that preserve the variable distribution[21]. 
Some widely-used imputation methods include: imputing 
using zero, mean, median, or mode; imputing using 
randomly selected value; and imputing using a model[22]. 
These techniques often impute a single and constant 
value for each variable without capturing or reflecting the 
relationship among the variables. This will likely result in 
an incorrect process-properties relationship.

Model-based imputation methods can be categorized 
into two types: those that make predictions for the missing 
values based on similar data points, and those that attempt 
to construct a global model to infer the missing data. The 
former includes algorithms such as k-nearest neighbors 
(kNN), while the latter encompasses deep learning neural 
networks.

The present study is focused on the investigation of the 
effect of different model-based imputation techniques on 
the process-structure relationship of the SLM Ti6Al4V 
dataset. The results of the imputation were evaluated to 
determine the best strategy for the dataset. This article 
will first present the methodology, followed by results and 
discussion about the different imputation methods, and 
finally the investigation of the imputed dataset.

2. Methodology
2.1. Imputation methods

2.1.1. k-Nearest neighbors (kNN) imputation

kNN imputation is one of the most common methods to 
impute missing values. It is used for both classification and 
regression problems[23]. The algorithm identifies k number 
of neighboring points using a distance metric and estimates 
the missing values using the values of these k neighboring 
observations[24].

The distance metric is generally Euclidean, and the 
function can be defined as

		  E x y x y
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Where xi  and yi  are the point of interest and a case 
point from the dataset, and m is the number of input 
variables[25]. The process flow for the imputation is shown 
in Figure 2.

Since the kNN algorithm is non-parametric[23], there is 
no underlying assumption on the distribution of data, and 
hence, kNN is suitable for datasets with varied distributions.

Imputation was done using Scikit-learn’s KNN 
Imputer class[26]. For calculation of the distance involving 
missing values, the coordinates of the missing value are 
ignored and the weights of the remaining coordinates 
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are scaled-up[27]. The distance metric used to calculate 
the similarity between samples is the Euclidean distance. 
When calculating the distance involving missing values, 
the coordinates of the missing values are ignored. This 
means that when calculating the distance between two 
samples, only the coordinates where both samples have 
values are considered. The missing values are effectively 
treated as if they do not exist.

To account for the missing values, the weights of 
the remaining coordinates are scaled-up. This means 
that the distances between samples are adjusted to 
account for the missing values, so that samples that are 
similar in the remaining coordinates but have missing 
values in different locations are still considered similar. 
The scaling-up of weights is done by multiplying the 
weights of the remaining coordinates by a factor that is 
proportional to the number of non-missing coordinates 
in the samples being compared. Specifically, for each 
sample being compared, the weights of the remaining 
coordinates are divided by the proportion of non-missing 
coordinates in that sample. This means that the weights 
of the remaining coordinates are scaled-up by a factor 
equal to the reciprocal of the proportion of non-missing 
coordinates in the sample. This adjustment ensures that 
the distance metric takes into account the missing values 
in a meaningful way, without allowing the missing values 
to dominate the calculation. Each sample’s missing values 
are imputed using the mean value from n_neighbors 
nearest neighbors, with n_neighbors = 5.

2.1.2. Multivariate imputation by chained equations

Multivariate imputation by chained equations (MICE)[28] 
is an imputation technique that iteratively imputes missing 
data for one variable modeled as a function of the other 

variables in a sequential fashion such that prior imputed 
values are used as part of the model in predicting 
subsequent variables. Hence, each variable can be modeled 
conforming to its distribution with continuous variables 
modeled using linear regression, while binary variables are 
modeled with logistic regression.

To carry out MICE, multiple copies of the dataset have 
to be created first. The following steps are then carried out 
on each copy of the dataset[29]:

(i)	 Missing values for each variable are imputed using 
non-missing values from the variable as a placeholder.

(ii)	 Set the imputed placeholders for one variable back to 
missing and model the selected variable as a function 
of the other variables. For each variable with missing 
values, the IterativeImputer class sets the imputed 
values for that variable to missing and models the 
selected variable as a function of the other variables 
using ExtraTreesRegressor. The model is trained 
on the complete cases, which are the cases where all 
variables are observed.

(iii)	Using the fitted “ExtraTreesRegressor” model, predict, 
and impute missing values for the selected variable.

(iv)	 Repeat steps (ii) and (iii) for each variable in the 
dataset.

(v)	 The imputation cycle is repeated for 10 cycles, with the 
imputed values being updated at the end of each cycle.

The imputed copies of each dataset are then analyzed 
and the results combined using rules specific to the 
results[28], calculated using Rubin’s Rules[30]. Rubin’s 
Rule states that the estimated variance of the combined 
estimate is equal to the average of the within-imputation 
variance (the variability of the estimate within each 
imputed dataset) and the between-imputation variance 
(the variability of the estimates across the imputed 
datasets). To calculate the combined estimate, the point 
estimates from each imputed dataset are averaged, and the 
variance is calculated using Rubin’s Rule. This approach 
accounts for the uncertainty due to missing data and 
provides estimates that are more accurate than those from 
the traditional complete case analysis.

Imputation was executed using Sckit-learn’s 
IterativeImputer class, with the process flow as shown 
in Figure 3. Its implementation is similar to the R MICE 
package[28] but returns only one imputed dataset instead 
of multiple imputed datasets[31]. The estimator used for 
the sequential imputation was ExtraTreesRegressor, 
which builds an ensemble of regression trees, with 
default hyperparameters. Using ExtraTreesRegressor as 
the estimator for the IterativeImputer class, non-linear 
relationships between the variables in the dataset can be 
captured, which can result in improved imputations.

Figure 2. Process flow for k-nearest neighbor imputation.
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Since the Extra Trees algorithm is similar to Random 
Forest, which does not make any assumptions on the 
data[32], the distribution of the dataset to be imputed would 
not have a major impact on the imputation result.

2.1.3. Graph imputation neural network (GINN) 
imputation

GINN is a deep learning library that imputes missing data 
by first building a graph of similarities between complete 
values and then running an autoencoder with graph 
convolutions on top of that, with the schematics shown in 
Figure 4[33].

To develop the graph of similarities, each node of the 
graph is represented by a feature vector in the dataset, with 
Euclidean distance used to find the similarity between non-

missing values[33]. Pruning is carried out twice by dropping 
all the connections below the 97.72th percentile, which was 
found to be a good value from experimental tests[33], for 
each row, leaving behind the most relevant nodes.

The graph convolution autoencoder used is defined as:

H=ReLU LX 1�� � � (II)

( )Θ2X=Sigmoid LHˆ � (III)

Equation II is the encoder that takes the input X, 
with L as the Laplacian matrix related to the graph, and 
Θ1 as a matrix of adjustable coefficients, and produces an 
encoded value H. Equation III is the decoder that provides 
a reconstructed imputed dataset X̂  from the encoded H.

The graph convolution network is trained to minimize 
the loss function arising from errors in reconstruction as 
defined below:

( ) ( )L MSE X,X 1 CE(X,X)ˆ ˆ
A = α + −α � (IV)

Where MSE is the mean squared error for numerical 
variables, CE is the cross-entropy for categorical variables, 
and is an additional hyperparameter set as the ratio 
between numerical and categorical variables[33].

Adversarial training of the autoencoder is used in which 
a feedforward network is used as the critic to differentiate 
between imputed and non-imputed data, introducing an 
additional term to the loss function to include adversarial 
loss[33]. A  more in-depth explanation of the GINN 
framework can be found in a previous work[33].

2.2. Cleaning of the dataset

Since there is a significant proportion of missing data 
in the dataset, initial data cleaning has to be carried out 

Figure 3. Process flow for graph imputation neural network imputation 
using IterativeImputer.

Figure 4. Schematics of graph imputation neural network imputation[27].
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before imputation as the information is of limited use if 
there is insufficient data.

The proportion of missing data is first calculated for 
each variable, and variables with more than 92% missing 
data are dropped (Table 1).

In general, process parameter variables have fewer 
missing values as the print parameters are normally 
reported regardless of the type of mechanical tests being 
conducted, whereas material property variables have high 
number of missing values as not every study has reported 
the same material properties. The threshold number of 92% 
is determined having considered the importance of the 
variables and the pattern of missing data. It is understood 
that the accuracy and reliability of the imputations may be 
lower when a large proportion of the data is missing. In 
general, imputation methods tend to perform better when 
the amount of missing data is lower and may struggle to 
accurately impute large amounts of missing data. Therefore, 
in our case, we attempted alternative method such as 
multiple imputation followed by a median approach to 
improve the accuracy. Of the remaining variables, scanning 
strategy and microstructure are dropped as they are too 
varied and unable to be generalized. Duplicate rows in the 
remaining dataset are then dropped. 401 datapoints were 
retained.

There are 18 variables retained: energy density (J/mm3), 
exposure duration (µs), hatch spacing (µm), laser focus 
(mm), laser power (W), laser spot (µm), laser type (0 for 
continuous wavelength [cw], 1 for pulsed wavelength 
[pw]), layer thickness (µm), point distance (µm), scan 
speed (mm/s), density (%), elongation (%), microhardness 
(HV), macrohardness (HV), ultimate tensile strength 
(MPa), yield strength (MPa), Young’s modulus (GPa), and 
porosity (%). Only two variables, laser power and laser 
type, do not have any missing values.

Cells that have a range of data inputted as a string 
(e.g.,  “60 – 180”) are replaced with the mean values. As 
the exact value was not given for the variable, the use of 
mean values for the range is the only option, although it 
will lead to some degree of uncertainty. Cells with standard 
deviations (e.g., “0.12 ± 0.03”) are replaced to retain only 
the numeric values in front.

2.3. Visualizing relationships in imputed dataset

After obtaining the imputed dataset using the median 
values obtained from the 3 algorithms, the process-
properties linkages for SLM Ti64 can be obtained using 
data-mining through a self-organizing map (SOM). A SOM 
is an unsupervised machine learning model developed 
by Kohonen that reduces the dimensionality of an input 
space while maintaining its underlying structure[34]. This 

is especially useful to visualize large quantities of high 
dimensional data and model the relationship between 
them in a low, two-dimensional map, helping to advance 
the understanding of process-property relationships for 
materials.

The implementation of the SOM is from a Python 
package Tfprop_sompy, developed by Kikugawa and 
Nishimura, based on an open-source package SOMPY[35]. 

The training data were normalized by x
x

ij
ij j

j

�
� �

�
 where 

xij is the i-th row of the j-th variable in the data, and µj and 
σj are the mean and standard deviations of the j-th variable, 
respectively. The size of the map was set to be 50 × 50 with 
the weights initialized using principal component analysis. 
Different sizes of the SOM were attempted and a map size 
of 100 × 100 was chosen such that each node of the map 
corresponds to at most one point of data in the dataset[36].

3. Results and discussion
3.1. Validation of the imputation models

Validation of the imputed values can be done through 
graphical plots that show the distribution of data, as well 
as numerical displays such as summary statistics of the 
imputed dataset[37].

Graphical evaluation of the imputed datasets is 
performed through data visualization using three 
plots: Boxplot, kernel density plot with histogram, and 
cumulative distribution plot. By comparing the statistical 
visualization plots, one can have an idea of the distribution 
of the imputed values and determine if they fall within 
expected boundaries.

Figure  5 shows the visualization plots for the energy 
density of the original dataset (observed) against the 
complete imputed dataset (imputed) for kNN imputations. 
The imputed values have close distributions to the original 
dataset and can be said to have reasonable values.

The three visualization plots for all the incomplete 
variables are plotted for each of the imputed datasets, 
and the imputed values for energy density, hatch spacing, 
laser spot, layer thickness, scan speed, elongation, 
microhardness, macrohardness, yield strength, and 
porosity for all three imputed datasets are found to be 
adequately close to the distribution of the original dataset 
(Figures S1–S3). However, the distributions for exposure 
duration, laser focus, point distance, and Young’s modulus 
deviate from the original distribution to varying degrees 
for the different imputation techniques, with MICE 
(Figure  6) showing the greatest deviation followed by 
GINN (Figure 7) and then kNN (Figure 8).

https://doi.org/10.36922/msam.50
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The variables exposure duration and point distance 
are only applicable to pulse wave laser for SLM. Since 
the dataset contains data from both pulse wave laser and 
continuous wave laser, the imputed values for these two 
variables would be for continuous wave laser parameter 
sets, which would not be relevant.

According to the literature[38], laser focus is a parameter 
that determines the laser spot size. However, the original 

literature that provided the values for laser focus did not 
state the laser spot size, and since there are several different 
ways to define the beam diameter[39], it is difficult to obtain 
the correct relationship between laser focus and laser spot 
for each observed value of laser focus. This could be a 
contributing factor, together with the limited data for laser 
focus, which led to the imputed values deviating from the 
original distribution.

Figure 5. Graphs comparing the distributions of the observed (red) and imputed (green) energy density values. Top: Boxplot of the observed and imputed 
energy density values. Middle: Kernel density plot (line) with histogram (bars) of the observed and imputed energy density values. Bottom: Cumulative 
distribution plot of the observed and imputed energy density values.

Figure 6. Graphs comparing the distributions of the observed and imputed values of exposure duration, laser focus, point distance, and Young’s modulus 
for multivariate imputation by chained equations-imputed dataset, where RF is relative frequency and P is probability.
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For the imputed values of Young’s modulus, there 
appears to be a peak at around 120 GPa for all three 
imputed datasets. On further investigation of the imputed 
datasets, it was found that most of the imputed values 
close to 120 GPa correspond to sets of observed data that 
have similar values for the other parameters. Hence, it is 
not unreasonable for the range of values for the imputed 
Young’s modulus values to be around 120 GPa. There is also 
limited observed data for Young’s modulus (92% missing 
values), which could have contributed to the limited range 

of values imputed. To improve the distribution, more 
varied data with a larger range of Young’s modulus values 
have to be obtained to allow the imputation algorithms to 
be more robust.

The complete visualization plots for all incomplete 
variables for all three imputed datasets can be found in the 
Supplementary File.

Occasionally, imputing more than 50% of the values 
may be required depending on the specific dataset and 

Figure 7. Graphs comparing the distributions of the observed and imputed values of exposure duration, laser focus, point distance, and Young’s modulus 
for graph imputation neural network-imputed dataset, where RF is relative frequency and P is probability.

Figure 8. Graphs comparing the distributions of the observed and imputed values of exposure duration, laser focus, point distance, and Young’s modulus 
for the k-nearest neighbor-imputed dataset, where RF is relative frequency and P is probability.

https://doi.org/10.36922/msam.50
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research question. In this case, it is necessary to impute a 
large proportion of missing data to maintain a sufficient 
sample size and to include important variables in the 
analysis. However, imputing a high proportion of missing 
data can also increase the risk of bias and lead to inaccurate 
results. Therefore, it is important to carefully evaluate the 
validity of imputed data through various methods such as 
statistical summaries and comparison with observed data.

Statistical summaries can be used to validate imputed 
values, and Table  2 shows the compiled observed and 
imputed datasets. In the kNN-imputed dataset, the 
minimum and maximum values for all imputed variables 
remained unchanged from the original values. The mean 
and standard deviation of observed and imputed energy 
density values were similar (89.20  vs. 89.07  J/mm3, and 
68.05  vs. 65.14  J/mm3, respectively). However, variables 
such as laser spot showed disparities in mean (125.56 vs. 
106.03 µm) and standard deviation (133.86 vs. 97.57 µm), 
possibly due to differences in the proportion of missing 
data for each variable, with energy density having 364 
observed values out of a total of 401, compared to only 194 
observed values for laser spot.

Similarly, for the MICE-imputed and GINN-imputed 
datasets, the minimum and maximum values for all 
imputed variables did not change. There were also 
disparities in mean and standard deviations for variables 
laser focus and laser spot, possibly due to a large proportion 

of missing data, as discussed above. For the MICE-
imputed dataset, the standard deviations of ultimate tensile 
strength and yield strength do differ (147.47  vs. 218.33 
GPa, and 189.93  vs. 269.83 GPa, respectively) but given 
the proportion of missing data for these two variables, the 
imputed values may be reasonable. Thus, individual values 
of the imputed dataset have to be checked to ascertain if 
the imputations are sensible.

Other than using the graphical and statistical methods 
to evaluate the imputed datasets, imputed values are also 
manually checked for any illogical values for the material 
properties: density and porosity values should add up to 
100%, and the microhardness should be higher than the 
macrohardness[40]. Imputed values for process parameters 
should also fall within the processing window.

3.2. Comparison of imputation models

Comparing the distribution graphs, all three imputed 
datasets have relatively close distributions to the original 
dataset for the process parameters, as well as density and 
porosity variables. The discriminating features are the 
remaining variables, namely, elongation, microhardness, 
microhardness, ultimate tensile strength, yield strength, 
and Young’s modulus. The model performs better for the 
processing parameters as they are deterministic and depend 
on fewer external factors. In addition, more datapoints are 
available for the processing parameters as they are reported 
in most of the studies. The material properties have a 
higher deviation because they have fewer datapoints as not 
every study focused on every aspect of material properties. 
There are also other factors such as different scan strategies, 
microstructures, and mechanical test conditions that are 
not captured in the dataset, leading to poorer imputation 
accuracy. As seen from the cumulative distribution plots 
(Figure 9) and distribution plots (Figure 10) of the three 
imputed datasets, GINN imputation results in the closest 
distribution to the original dataset.

The distribution of the kNN-imputed dataset has 
an acceptable deviation from the original distribution. 
However, an examination of the imputed dataset found 
that many imputed values for material properties are 
identical, even with different process parameters. The 
kNN algorithm did not manage to adequately capture 
the relationship between process parameters and 
material properties. Even so, it did successfully model 
the relationship between density and porosity, with all 
imputed values for these two variables adding up to 100%. 
There were also only a few instances where microhardness 
was lower than macrohardness.

Mean square error of the distributions is calculated and 
tabulated in Table  3. It was found that kNN performed 

Table 1. Percentage of missing values for each variable

Variables Missingness (%)

Laser power (W) 0.00

Laser type (0 for cw, 1 for pw) 0.00

Layer thickness (µm) 0.25

Hatch spacing (µm) 5.93

Energy density (J/mm3) 9.14

Scan speed (mm/s) 14.81

Density (%) 43.46

Laser spot (µm) 51.60

Porosity (%) 69.14

Laser focus (mm) 73.09

EL (%) 79.51

Ultimate tensile strength (MPa) 79.51

Exposure duration (µs) 80.49

Point distance (µm) 81.98

Yield strength (MPa) 82.22

Macrohardness (HV) 88.15

Microhardness (HV) 90.12

Young’s modulus (GPa) 92.35
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the best for six variables, including exposure duration, 
hatch spacing, laser focus, layer thickness, point distance, 
and Young’s modulus. GINN gave the best imputation for 
seven variables, including laser spot, density, elongation, 
microhardness, macrohardness, ultimate tensile strength, 
and yield strength. MICE only outperformed kNN and 
GINN in two variables, that is, scan speed and porosity. 
It is interesting to note that kNN performed better in 
imputing variables related to process parameters, whereas 
GINN performed better in variables related to material 
properties.

For the MICE-imputed dataset, the imputed values were 
much more varied, and the imputations showed a stronger 
relationship between the process parameters and material 
properties than the kNN-imputed dataset. While MICE 
performed better than kNN in that aspect, there were more 
instances where microhardness values were lower than 
macrohardness values (137 for MICE versus 73 for kNN). 
The sum of the imputed density and porosity values also do 
not add up to 100%, instead ranging from 99.92% to 100.12%.

The GINN algorithm can be said to have performed 
the best with the closest distribution to the original dataset 
and the most varied imputed values, although with 109 
instances of lower values of microhardness compared to 
macrohardness, translating to 73% of the data showing the 

correct relationship. Most of the sums of imputed density 
and porosity values add up to 100% when rounded to 2 
decimal places.

The performances of the models were validated by 
comparing the values obtained from the models with 
the actual values calculated from a known relationship. 
The laser scan speed is known to be related with other 
parameters by the equation below.

		  V P
Ehl

= � (V)

where V is the laser scan speed, P is the laser power, E is 
the volumetric energy density, h is the hatch spacing, and l 
is the layer thickness. There are 48 datarows in the dataset 
that contains missing data for the laser scan speed while 
other parameters such as laser power, energy density, hatch 
spacing and layer thickness are available. These datarows 
can be used to validate the performance of the imputation 
models by comparing the imputed laser scan speed with the 
calculated laser scan speed using the known relationship 
as shown in Equation V. Figure 11 shows the performance 
of the models. It is found that the KNN model tends to 
overpredict the laser scan speed, while the GINN model 
tends to underestimate the laser scan speed. The MICE 
model is able to predict the laser scan speed correctly in 

Figure 9. Cumulative distribution plots for k-nearest neighbor-imputed (left), multivariate imputation by chained equations-imputed (middle), and graph 
imputation neural network-imputed (right) datasets for selected incomplete variables.
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Figure 10. Distribution plots for k-nearest neighbor-imputed (left), multivariate imputation by chained equations-imputed (middle), and graph imputation 
neural network-imputed (right) datasets for selected incomplete variables.

Table 3. Comparison of the mean square error of the 
distribution for each variable

Features kNN MICE GINN

Energy density (J/mm3) 3.06E-07 1.71E-07a 3.11E-07

Exposure duration (µs) 1.64E-05a 4.46E-05 3.23E-05

Hatch spacing (µm) 1.32E-07a 7.72E-08 6.77E-08

Laser focus (mm) 2.90E-02a 3.03E-02 4.47E-02

Laser spot (µm) 1.19E-06 8.50E-07 2.97E-07a

Layer thickness (µm) 1.42E-09a 2.88E-09 4.26E-09

Point distance (µm) 1.23E-04a 8.56E-04 1.03E-03

Scan speed (mm/s) 1.11E-09 3.75E-10a 7.04E-10

Density (%) 1.77E-03 2.27E-03 1.82E-03a

Elongation (%) 3.87E-03 2.29E-03 1.81E-03a

Microhardness (HV) 1.50E-05 1.51E-05 4.81E-06a

Macrohardness (HV) 1.69E-04 2.99E-05 2.36E-05a

Ultimate tensile strength (MPa) 2.08E-07 4.52E-07 4.86E-08a

Yield strength (MPa) 9.12E-07 7.23E-07 2.30E-07a

Young’s modulus (GPa) 2.24E-04a 2.26E-04 2.97E-04

Porosity (%) 6.01E-05 2.99E-05a 4.71E-05
aLowest MSE among the three models. kNN: k-nearest neighbor, 
GINN: Graph imputation neural network, MICE: Multivariate 
imputation by chained equations

general, but the presence of outliers causes the relative 
mean square error (RMSE) (1.36) to be higher compared 

to the KNN (0.29) and GINN (0.16). GINN performs the 
best in terms of the RMSE.

To further validate the results, a composite parameter 
(energy density × hatch spacing) was used to evaluate the 
models. There are 19 datarows in the dataset that contains 
missing data for the energy density and hatch spacing, 
while other parameters of the energy density equation such 
as laser power, laser scan speed and layer thickness are 
available. Figure 12 shows the performance of the models. 
It is found that the MICE model tends to overpredict the 
composite parameter, while the GINN model tends to 
underestimate the composite parameter. The GINN model 
has a lowest RMSE (0.33) for the composite parameter, 
whereas MICE model has a higher RMSE (3.87) for the 
composite parameter.

To get the best out of the three models, further 
processing steps were taken. For each missing datapoint, 
the median of the imputed values obtained from the three 
models was taken as the final imputed value. This enhances 
the statistical confidence of the imputed value and reduces 
the chances of getting the outliers especially when dealing 
with small dataset. It resulted in a remarkable RMSE of 
0.026, which is significantly lower than that of all three 
individual models (Figure 13). Nonetheless, it is believed 
that the models can be further improved with increased 
number of datapoints.
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The accuracy of the imputed results depends on 
several factors such as the quality of the original data, the 
imputation method used, and the amount and pattern 
of missing data. In this context, the imputation method 
used (GINN, MICE, and kNN) was found to be effective 
in reducing the overall RMSE and improving the accuracy 
of the imputed data. The final imputation strategy, which 
involved taking the median of the imputed values from 
the three models, further improved the accuracy of the 
imputed data.

While the results obtained in this study are promising, 
it is important to note that the suitability of the imputed 
data for wider implementation or industrial use depends 
on the specific context and requirements of the application. 

For example, if the imputed data are to be used for critical 
decision-making or safety-critical applications, a more 
rigorous validation process may be necessary to ensure the 
accuracy and reliability of the imputed data.

Data imputation is a crucial step in data analysis and 
modeling, especially when dealing with missing data. 
Imputation methods such as MICE and kNN can help to 
recover missing data and enable more robust and accurate 
data analysis. In addition, imputation can also help to 
reduce bias and increase the representativeness of the 
data, which can improve the quality of the insights and 
conclusions derived from the data.

The value of this work lies in its application of multiple 
imputation methods to a real-world dataset in the context 

Figure 11. Comparison of the actual and predicted laser scan speed for various models. (A) k-nearest neighbor; (B) multivariate imputation by chained 
equations; (C) graph imputation neural network. See Supplementary File for the out-of-bound outliers.

CBA

Figure 12. Comparison of the actual and predicted composite parameter (energy density × hatch spacing) for various models. (A) k-nearest neighbor; (B) 
multivariate imputation by chained equations; (C) graph imputation neural network.

CBA

Figure 13. Strategy to improve quality of imputed dataset. (A) Median of the imputed values obtained from the k-nearest neighbor, multivariate imputation 
by chained equations, and graph imputation neural network. (B) The actual and predicted laser scan speed for the median of the imputed values. (C) The 
actual and composite parameter (energy density × hatch spacing) for the median of the imputed values.

CBA
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of SLM. The study provides insights into the effectiveness 
of different imputation methods and highlights the 

importance of careful data cleaning and validation in 
ensuring the accuracy and reliability of the imputed 

Figure 14. Heatmaps produced by self-organizing map for all 14 variables: 7 process parameters and 7 material properties. Red regions correspond to high 
values and blue regions correspond to low values.
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data. The study also demonstrates a practical approach 
to combining multiple imputation models to enhance the 
statistical confidence of the imputed data, which can be 
useful in other domains as well.

4. Visualizing relationships between 
variables in imputed dataset
Heatmaps for each variable was used to visualize the SOM 
trained, produced by linking each variable value to a node 
on the map grid (Figure 14). The relationships between the 
variables can be determined based on visual analysis, by 
comparing the locations of the red and blue regions that 
correspond to high and low values respectively. Based on 
the heatmaps, the following observations are made from 
the imputed dataset, some of which are well established 
relationship:

(i)	 Porosity is inversely related to Young’s modulus and 
yield strength.

(ii)	 Scan speed is inversely related to microhardness and 
macrohardness.

(iii)	Exposure duration is directly related to macrohardness.
(iv)	 Ultimate tensile strength, yield strength, and 

elongation are directly related.
(v)	 Energy density and scan speed are inversely related.
(vi)	 Laser power and Young’s modulus are slightly directly 

related.

These relations provide insight into the process-
property relationships in SLM Ti64 and can help users 
determine the process parameter window to obtain certain 
desired material properties. For example, to obtain a 
specimen with higher hardness, a lower scan speed, higher 
energy density and longer exposure duration should be 
used. A higher laser power is also likely to result in higher 
Young’s modulus. The inverse relationship between the 
energy density and scan speed are found to be consistent 
with the energy density equation.

The inverse relationship between scan speed and 
microhardness in SLM Ti64 can be explained by several 
factors. First, high scan speeds can also lead to incomplete 
melting, resulting in the formation of unmelted or partially 
melted particles, which can act as a source of defects 
and lower the microhardness[41]. Second, there could be 
a change in microstructure of the printed Ti64 from a 
coarser equiaxed grains to a finer columnar grains as the 
scan speed increases. When the scanning speed is slow, the 
laser’s slower movement increases both the energy input 
and stability of the molten pool. The elevated temperature 
in the molten pool creates adequate energy and nuclei for 
the epitaxial growth of columnar grains in the building 
direction. Wang et al. observed the coarsening of acicular 
structures in the samples produced at a speed of 250 mm/s 

compared to those produced at a speed of 1150 mm/s, 
and the shape was similar to that of heat-treated 
samples, as documented by Vilaro et al.[11,42]. As the scan 
speed increased to 1150 mm/s, the quantity of β-phase 
nanoparticles reduced, and only few white particles were 
dispersed across the fine acicular α (α′) grain boundaries.

There are several factors that can contribute to the 
relationship between laser power and Young’s modulus in 
SLM of metals. One possible explanation is related to the 
changes in microstructure and grain size that can occur 
as a result of varying laser power levels. High laser power 
can lead to rapid melting and solidification of the material, 
resulting in smaller grain sizes and higher dislocation 
densities, which can contribute to an increase in Young’s 
modulus.

It is noted from the heatmap that there is a slight 
correlation between laser power and Young’s modulus. 
However, the effect of laser power on the Young’s modulus 
in SLM Ti64 is not straightforward and depends on several 
factors. At low laser powers, the material experiences less 
thermal input and solidifies with a finer microstructure, 
resulting in a higher Young’s modulus due to the increased 
strength of the material. However, as the laser power 
increases, the material is heated to a higher temperature, 
resulting in coarser microstructures due to increased grain 
growth and leading to a decrease in the Young’s modulus. 
Furthermore, excessive laser power can result in porosity 
and defects in the material, which can significantly reduce 
the Young’s modulus[10]. Therefore, the laser power should 
be optimized to achieve the desired microstructure and 
avoid porosity formation to ensure that the built parts 
have the required Young’s modulus for their intended 
application.

Overall, it is important to consider the complex 
interplay between multiple process parameters and 
material characteristics that can affect mechanical 
properties in SLM. This also highlights the importance 
of including scan strategies and microstructures in the 
dataset for better generalization of the process-structure-
properties relationship of SLM Ti64.

5. Conclusions
In this study, three model-based imputation techniques, 
kNN, MICE, and GINN imputations, were used to 
impute missing values in the Ti6Al4V dataset, which 
contained various process parameters and material 
properties obtained from multiple sources available in the 
literature. The results of the imputations were evaluated 
using graphical checks and statistical summaries to 
compare the imputed data with the original distribution 
before imputation. Among the three techniques, GINN 
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imputation gave the closest distribution to the original 
dataset and was the most accurate method, achieving the 
lowest RMSE. A median approach was used by taking the 
median of the imputed values from the three models. It 
was found that the median approach further improved the 
imputation accuracy by achieving RMSE of 0.026.

Data mining of the imputed SLM Ti64 dataset 
using SOM identified correlations between the process 
parameters and material properties. These correlations 
can be utilized to help users identify suitable process 
parameters for specimens with certain desired properties. 
While the material properties of monotonic yield strength 
and elongation at break are important, there are many other 
properties that could be of interest in the field of additive 
manufacturing. For example, fatigue strength, fracture 
toughness, creep resistance, and corrosion resistance are 
all important material properties that could be explored. 
In addition, exploring the relationship between process 
parameters and microstructure, such as grain size, 
could also provide valuable insights for optimizing the 
manufacturing process. The presented approach can also 
be applied to other databases to obtain new knowledge 
from the database.

However, a major limitation of the imputation methods 
is that a large proportion of missing data would lead 
to more inaccurate data imputation, and more manual 
checking of individual imputed values to ensure validity 
would be required. Imputation is not always appropriate 
and may introduce bias or lead to incorrect conclusions if 
the missing data is non-random or missing not at random. 
There is no specific quantitative threshold or limit to how 
much imputation can be performed before the results 
become meaningless. The validity of imputed data depends 
on the accuracy of the imputation models, the quality of the 
original data, and the degree and pattern of missingness.

In summary, imputation using the median approach was 
found to be the most accurate method for imputing missing 
data in the Ti6Al4V dataset, and the data mining approach 
using SOM identified correlations between process 
parameters and material properties. However, the study 
also highlights the need for more standardized testing and 
reporting, and the limitations of data imputation methods 
when dealing with a large proportion of missing data.
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