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Abstract
Hydrogen sulfide (H2S), a gaseous biomolecule, is considered a key player in the 
regulation of various essential cellular events. Normal physiology is determined by 
the level of endogenous H2S. Any alterations (upregulation and downregulation) to 
the level of endogenous H2S may lead to illness, including the onset of tumorigenesis. 
Over the past two decades, extensive research on the role of H2S in cancer development 
has affirmed the potential pharmacological means to suppress cancer progression by 
either inhibiting H2S synthesis in cells or exposing exogenously supplied H2S donors 
to treat different cancers. Some H2S donors and inhibitors release H2S or affect its 
synthesis. As a result, they have progressed through the development process into 
widespread clinical use and become increasingly important. The present study draws 
a detailed discussion on the types of H2S donors and inhibitors and their role in cancer 
research. We believe that this state-of-the-art review will empower the synthesis 
of H2S-based chemopreventive drugs and promote the need for further in-depth 
exploration of the associations between H2S and cancer treatments in clinical settings.
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Gene & Protein in Disease

1. Introduction
Hydrogen sulfide (H2S) is a colorless, flammable gas with water-soluble properties 
and a rotten-egg odor. H2S has historically been considered toxic and occupationally/
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anticipate that this state-of-the-art review will empower 
the synthesis of H2S-based chemopreventive drugs and 
promote the need for further in-depth exploration of the 
associations between H2S and cancer treatments in clinical 
settings.

2. Targeting exogenous H2S for cancer 
treatment
2.1. Natural world

2.1.1. Allicin

Diallyl thiosulfinate, also known as allicin, is a biologically 
active compound found in garlic. Having antitumor 
and antimicrobial properties, this compound induces 
antitumor activities by regulating cellular processes, such as 
apoptosis, inflammation, oxidative stress, autophagy, and 
angiogenesis[11]. The mechanisms targeted in mediating 
its effects include post-translational modifications of the 
protein cell cycle, mitochondria apoptotic pathways, redox-
sensitive signaling cascades, catalytic actions of telomerase 
enzyme, and activities of intercellular glutathione (GSH) 
and nucleic acid modifications[12]. The effects of allicin 
vary with different cancers and cell types[13]. It has been 
shown that the treatment of colon cancer cells (HCT-
116) with allicin can effectively inhibit cell proliferation 
by promoting pro-apoptotic events characterized by the 
upregulation of Bax and cytochrome (Cyt)-c expressions, 
the downregulation of Bcl-2 and Bcl-xL, and subsequently, 
the activation of nuclear factor erythroid-2-related factor 2 
(Nrf2) and deactivation of signal transducer and activator of 
transcription 3 (STAT-3) pathways[14]. The administration 
of allicin induces autophagic cell death in liver and thyroid 
cancer through the stimulation of p53 and the inactivation 
of protein kinase B (AKT)/mammalian target of rapamycin 
(mTOR) pathway, respectively[15].

In ovarian cancer, glioblastoma, gastric cancer, cervical 
cancer, and cholangiocarcinoma, the anti-carcinogenic 
effects of allicin have been found to be associated with 
the activation of c-Jun N-terminal kinase (JNK) mitogen-
activated protein kinase (MAPK)/extracellular signal-
regulated kinase (ERK) and p38 MAPK/Nrf2 pathways as 
well as the inhibition of STAT-3 cascades[16]. Furthermore, 
the loss of mitochondria potential, the activation of 
caspases, and the overexpression of p21, NOX4, and Bak 
have been reported in a breast cancer cellular model 
following the treatment with allicin[17]. A  recent study 
has also revealed that allicin can effectively suppress the 
migration and invasion of gastric cancer cells by elevating 
miR-383-5p and inhibiting the receptor protein-tyrosine 
kinase ERBB4[18]. In addition, allicin effectively reverses 
the oncogenic properties of ornithine decarboxylase in 
neuroblastoma[19].

environmentally harmful[1]. In mammals, H2S can 
be endogenously generated through the catalysis of 
L-cysteine and homocysteine by cystathionine γ-lyase 
(CSE) and cystathionine β-synthase (CBS), which are the 
two members of pyridoxal-5bers of pyri(PLP)-dependent 
enzymes that are predominantly found in the cytosol 
form[2]. Besides, 3-mercaptopyruvate sulfurtransferase 
(3-MPST), which is a non-PLP-dependent enzyme, acts 
in unison with cysteine aminotransferase (CAT) and 
in the presence of α-ketoglutarate to produce H2S from 
L-cysteine. Both enzymes are colocalized in the cytosol 
and mitochondria[3]. Moreover, it has been indicated that 
D-amino acid oxidase can catalyze D-cysteine to form 
Achiral ketoacid  and 3-mercaptopyruvate, which is further 
processed by 3-MPST into H2S in both the brain and kidneys 
(Figure 1)[4]. The produced H2S is then instantly released 
or converted into acid-labile sulfur or bound sulfane 
sulfur and stored in mammalian cells[5]. The catabolism 
of H2S can occur through mitochondrial oxidation to 
sulfate and thiosulfate, excretion from the kidney or 
lung, sulfhemoglobin-mediated scavenging, and thiol 
methyltransferase and rhodanese-mediated methylation 
to generate methanethiol and dimethylsulfide[6].

Due to its unique chemistry, molecular reactivity 
mechanisms, ability to modify proteins, and active 
participation in many redox reactions with metal, H2S 
has emerged as an essential signaling molecule in cancer 
biology. A huge volume of research has indicated the key 
roles of H2S in a wide range of physiological activities 
related to cell cycle and tumorigenesis. H2S is involved in 
angiogenesis, tumor growth, cellular and mitochondrial 
biogenesis, migration and invasion, tumor blood flow, 
metastases, epithelial-mesenchymal transition (EMT), 
DNA repair, protein sulfhydration, and chemotherapy 
resistance[7-10].

Since the last decades of research trend in translating 
H2S to therapeutic forms, extensive efforts have been made 
by exploring natural H2S-based molecules and designing 
synthetic ones (donors and inhibitors) to exploit the role of 
H2S in cancer development. H2S donors and inhibitors have 
gained importance and are being extensively explored to 
determine their clinical application in research, especially 
cancer. The research community is constantly struggling 
to design H2S-based pharmacological drugs using these 
molecules and expecting significant breakthroughs in H2S 
research in cancer. Considering the clinical importance 
of these naturally existing and those pharmacologically 
synthesized H2S-based chemicals and research trends, it 
is worth summarizing the relevant literature that focuses 
on their use in translational research. The present study 
provides a detailed discussion of the types of H2S donors 
and inhibitors and their role in cancer research. We 
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Besides that, numerous studies have revealed the 
potential of allicin in enhancing the sensitivity effects of 
other anticancer therapeutics when used synergistically. For 
example, a combination of artesunate and allicin induces 
osteosarcoma cell death through caspase-dependent 
apoptotic pathways[20]. Similarly, the side effects of the 
anticancer drug cisplatin, especially in damaging stria 
vascularis, could be successfully reduced by synergizing 
the drug with allicin as shown in a mice model[21]. It has 
also been indicated that the sensitivity of temozolomide, 
a chemotherapy drug, can be significantly enhanced by 
allicin in glioblastoma through the upregulation of miR-
486-3p[22]. The compound has also been reported to 
improve the sensitivity of 5-fluorouracil in different types 

of cancer, including hepatocellular, lung, and colorectal 
cancer (CRC)[23,24]. In addition, the cardiotoxicity of the 
anticancer drug doxorubicin in rats can be reduced by 
allicin through the attenuation of apoptotic, oxidative 
stress, and inflammatory responses[25].

In multiple myeloma, the use of allicin with 
dexamethasone increases the sensitivity of side population 
cells to the latter by upregulating the expression of 
miR-127-3p and inhibiting phosphatidylinositol 3-kinase 
(PI3K)/AKT/mTOR pathway[26]. Allicin can also increase 
the sensitivity of cisplatin-resistant lung cancer cells by 
suppressing hypoxia-inducing factors 1α and 2α in hypoxic 
cells. Apart from chemotherapy, allicin can enhance the 

Figure 1. A schematic illustration of the biosynthesis of endogenous H2S in mammals. H2S: Hydrogen sulfide, H2O: Water, CBS: Cystathionine β-synthase, 
CSE: Cystathionine γ-lyase, NH3: ammonia, L-Glu: L-glutamate, αKG: α-ketoglutarate, 3-MST: 3-mercaptopyruvate sulfurtransferase, CAT: Cysteine 
aminotransferase, 3-MP: 3-mercaptopyruvate, DAO: D-amino acid oxidase.
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radiosensitivity of cancer cells by suppressing the nuclear 
factor-kappa B (NF-κB) signaling pathway in CRC[27] and 
through the promotion of intracellular DNA damage that 
is related to the downregulation of interleukin (IL)-6 and 
interferon-β as well as the increase in p53 expressions in 
glioblastoma[28]. Despite the promising anticancer effects 
of allicin, a recent study has shown that allicin can trigger 
hemolysis, eryptosis, and oxidative stress in erythrocytes 
through calcium overload and the activation of MAPK and 
casein kinase-1α[29]. The combined treatment of allicin with 
eryptosis inhibitors could be helpful in reducing the effect.

In recent years, nanoparticles have been established as 
effective and efficient carriers for delivering numerous drugs. 
In the case of allicin, its cytotoxicity in HepG2  cells has 
been demonstrated to be enhanced with the encapsulation 
of gelatin nanoparticles coated with glycyrrhetinic acid[30]. 
Moreover, the loading of allicin with cyclodextrin-based 
nanoparticles also enhances its delivery and the resulting 
corresponding pro-apoptotic effect on cancer cells[31]. Overall, 
allicin has shown promising anticancer activity. In addition, 
it is cost-efficient and can be used in combination with other 
drugs to increase sensitivity and alleviate side effects.

2.1.2. Ajoene

The anticancer properties of ajoene have been widely 
recognized and attentively investigated. Ajoene 
(4,5,9-trithiadodeca-1,6,11-triene-9-oxide) is a sulfur-
containing organic compound formed after the 
rearrangement of allicin. Ajoene occurs in two forms: 
Z-  and E-isomers. By characterization, the former is 
more bioactive, while the latter is relatively more stable. 
Recently, the compound has been shown to be synthesized 
in the laboratory through a new technique involving 
four key steps: (1) propargylation; (2) radical addition of 
thioacetate; (3) deprotection; and (4) disulfide formation/
allylation. Ajoene has antimicrobial, antithrombosis, 
anti-inflammatory, and anticancer properties[32]. In 
cancer, the compound targets several activities, such 
as migration, apoptosis, oxidative stress, and protein 
folding[33]. A  previous study has suggested that ajoene 
can induce anticancer effects in leukemia cells (HL-60) 
by triggering G2/M arrest, attenuating proteasome-
mediated trypsin-  and chymotrypsin-like activities as 
well as inhibiting ERK-1/2 signaling cascade[34]. Moreover, 
the ajoene has been shown to promote apoptosis in 
leukemic cells but not in peripheral mononuclear blood 
cells of healthy individuals by elevating the oxidative 
status and activating the NF-κB pathway[25]. Similarly, 
in lung adenocarcinoma, the treatment with 25 µM of 
ajoene significantly reduced the cell viability of cancerous 
cells A549, NCI-H1373, and NCI-H1395, but not non-
carcinogenic bronchus cells BEAS-2B, partially through 

reactive oxygen species (ROS)-induced apoptosis and the 
activation of JNK/p38 cascade[25].

In a human study of basal cell carcinoma, the patients 
were topically treated with ajoene. The study showed that 
ajoene can effectively suppress tumor growth through the 
activation of mitochondria-dependent apoptosis and the 
subsequent reduction of antiapoptotic Bcl-2 expression[35]. 
Besides, apoptotic regulators such as p53, p63, and p73 have 
also been demonstrated to be activated by the compound in 
cellular models[36]. Furthermore, Z-ajoene could selectively 
inhibit cancer stem cells from glioblastoma multiform by 
attenuating phosphorylated (p)-SMAD4, p-AKT, and 
FOXO3A expressions[37]. In MDA-MB-231 and HeLa 
cancer cells, ajoene has shown to reduce migration and 
invasion activities through s-thiolation of cysteine-328 
of the vimentin, thereby disrupting it and subsequently 
inhibiting metastatic activities[38].

An analog of ajoene, bis[(para-methoxy) benzyl], has 
more substantial anticancer effects. It acts by activating 
unfolded protein response mechanisms through CHOP/
growth arrest-  and DNA damage-inducible protein 153 
(GADD153) in esophageal carcinoma[39]. In the treatment 
of colon cancer cells, Z-ajoene effectively inhibits tumor 
growth by decreasing the expression of β-catenin and 
increasing CK-1α-mediated β-catenin phosphorylation 
and prevents skeletal muscle atrophy induced by colon 
cancer by suppressing muscle-specific E3 ligases and 
NF-κB[40]. Therefore, ajoene can specifically and selectively 
target cancer cells as well as promote apoptosis and 
antimetastatic activities.

2.1.3. Diallyl sulfide (DAS)

DAS is a significant component of garlic with protective 
properties against various physiological disorders. The 
regulation of cellular markers associated with apoptosis, 
redox status, necrosis, angiogenesis, and cytotoxicity 
(cytochrome P450  2E1), as well as the interaction with 
membrane lipids are among the mechanisms targeted 
by the compound[41]. In cancer, DAS has been previously 
shown to delay the onset of cancer in chemically induced 
skin tumors in mice[42]. The corresponding effects of DAS 
are associated with the inhibition of key cellular pathways, 
such as p53, p21/Ras, PI3K/AKT, and p38 MAPK cascades, 
with JNK1 and ERK1/2 remaining unaffected[43]. In vitro 
evidence has revealed that DAS can effectively protect 
normal human breast cells MCF-10A from a carcinogenic 
chemical compound, diethylstilbestrol, which can cause 
DNA damage and lipid peroxidation[44].

In prostate cancer, DAS has been shown to improve 
oxidative status by suppressing a testosterone-mediated 
decrease in antioxidants[45]. It has also been reported that 
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DAS can potentially induce antiproliferative properties in 
thyroid carcinoma by activating the mitochondria apoptotic 
pathway as displayed by the elevation of Bax, caspase-3, -9, 
and cytochrome c (cyt c) expressions, as well as the 
suppression of Bcl-2 expression[46]. DAS can also prevent 
the progression of colon cancer by containing the gene 
expression and activities of arylamine N-acetyltransferase 
and downregulating ERK1/2 pathway[47]. In a leukemia 
model, DAS restored the elevated levels of P-glycoprotein 
(P-gp), a multidrug protein[48]. The treatment of cervical 
cancer cells with DAS has been reported to promote cell 
cycle arrest and apoptosis by increasing ROS, calcium ions 
(Ca2+), and the number of cells accumulated in the gap 0 
(G0)/G1 phase[49]. The treatment increases the expressions 
of p21, p27, p53, Bad, Bid, Bax, apoptosis-inducing factor 
(AIF), caspases, and cyt c but decreases the expressions of 
Bcl-xl, Bcl-2, cyclin-dependent kinase 2 (CDK2), CDK6, 
checkpoint kinase (CHK)2, and human papillomavirus 
(HPV) oncogenes E6 and E7[50].

Furthermore, treating neuroblastoma cells SH-SY5Y 
with DAS has been shown to suppress pro-proliferative 
activities and trigger apoptosis by increasing caspases 
activation and Ca2+ levels while suppressing NF-κB 
pathway[51]. In a mice lung cancer model, DAS significantly 
reduced tumor growth and increased antioxidant levels 
and apoptotic activities by suppressing the expression of 
fatty acid synthase[52]. In a recent study, the combination of 
paclitaxel and DAS has been demonstrated to improve skill 
texture and downregulate antiapoptotic protein Bcl-2 in a 
mice skin cancer model[53].

Alternatively, in esophageal carcinoma, a previous study 
has revealed that DAS is only effective when administered 
after its exposure to carcinogen, which suggests that the 
compound is more effective as a treatment rather than for 
prevention purposes[54,55]. Overall, DAS has considerable 
potential as a therapeutic option for cancer. However, further 
studies are required to shed light on the possible ways of 
improving its efficiency and reducing the side effects.

2.1.4. Diallyl disulfide (DADS)

DADS is an organosulfur compound from garlic with 
strong anticancer properties. It is formed from allicin. 
DADS has demonstrated its effects in different types of 
cancers through the regulation of apoptosis, oxidative 
stress, and cell cycle, along with several cellular pathways 
associated with cancer survival and progression[56]. 
For example, in colon cancer cells HT-29 and Caco-2, 
treatment with DADS has shown to induce anticancer 
effects by activating histone 3, inhibiting histone 
deacetylase (HDAC), and increasing p21 expression[57]. 
In HCT-116, DADS has been shown to trigger G2/M 

arrest by activating cyclin B1 and promoting apoptosis 
through ROS-mediated activation of p53 pathway, thereby 
promoting cell death[58]. In another colon cancer cell 
line SW480, treatment with DADS has shown to inhibit 
migration and invasion by downregulating glycogen 
synthase kinase (GSK)3β/NF-κB and LIM kinase-1 
(LIMK-1)/dextrin/cofilin cascades, resulting in the 
suppression of vimentin, Ki-67, and CD-34 expressions 
and the elevation of E-cadherin[59]. Other signaling 
markers targeted with DADS treatment in colon cancer 
cells include the elevation of Ca2+ levels, phosphorylation 
of ERK, activation of STAT-1, and inhibition of Rac1/
PAK1/LIMK1/cofilin pathways[60].

In leukemia, DADS induces cell death through the 
inhibition of Rac1/ROCK1/LIMK1/cofilin and ERK 
pathways as well as the activation of p38MAPK, Rac2/
JNK, and caspase-dependent apoptotic pathways[61]. Its 
anticancer effects in leukemia cells are evident through 
the downregulation of vascular endothelial growth factor 
(VEGF) and calreticulin. It inactivates epidermal growth 
factor receptor (EGFR) and mTOR pathways that mediate 
the induction of G2/M and G0/G1 arrest through the 
downregulation of PARK-7, cofilin 1, and Rho GDP 
dissociation inhibitor 2[62].

In a mice prostate cancer model, testosterone and 
N-methyl N-nitroso urea-induced cancer and its 
associated features such as dysplasia, hyperplasia, and 
prostatic intraepithelial neoplasia were significantly 
reduced with DADS treatment[63]. In addition, it has also 
been reported that DADS treatment can promote apoptosis 
through G2/M arrest due to decreased CDK1 expression 
and the activation and inhibition of JNK and PI3K/AKT 
pathways, respectively. Furthermore, DADS also initiates 
histone hyperacetylation, increasing DNA damage, 
raising the expression of pro-apoptotic cell markers, and 
decreasing migration and invasion-associated proteins[64]. 
In hepatocellular carcinoma (HCC), DADS has been 
reported to reduce cell proliferation and migration by 
promoting apoptosis by regulating associated markers and 
G2/M arrest. Moreover, it also been reported to induce 
antiapoptotic activities and reduce toxicity by inhibiting 
CYP2E1[65]. Albeit, the pro-apoptotic effects of DADS can 
be increased in HCC by cotreating with other compounds, 
such as p38 or p42/44 MAPK inhibitors[66].

DADS enhances programmed cell death in breast cancer 
by promoting G0 arrest, altering Bcl-2 family proteins, 
inhibiting HDAC through histone-4 hyperacetylation, 
suppressing ERK, and activating SAPK/JNK and p38MAPK 
pathways[67]. The inhibition of ERK by DADS in breast 
cancer is initiated through the upregulation of miR-34a 
expression, leading to the inhibition of upstream cascades, 
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SRC and Ras[68]. Similarly, other studies have shown that 
DADS treatment can reduce breast cancer progression and 
metastases by elevating the expressions of tristetraprolin[68]. 
Furthermore, the investigation of normal breast cancer 
cells MCF-10A has indicated that DADS pre-treatment 
can protect against benzo(a)pyrene-induced cancer and 
the compound can help to avert environmentally induced 
cancer initiation[69]. It has also been demonstrated that 
DADS treatment can effectively inhibit pro-cancer activities 
in triple-negative breast cancer (TNBC) cells by suppressing 
antiapoptotic proteins and β-catenin activation[70]. In 
addition, nanoemulsions of DADS with α-linolenic acid 
can trigger G0/G1 arrest and regulate the ERK pathway in 
MCF-7 cells[71]. Moreover, the modification of DADS loaded 
in solid-lipid nanoparticles with receptor for advanced 
glycation end products antibody improves the efficiency of 
DADS by facilitating target-specific delivery and reducing 
off-target effects in TNBC[72].

DADS exerts its anticancer effects in lung cancer by 
regulating the expression of apoptotic proteins, increasing 
ROS levels, and Ca2+ elevation, inducing G2/M arrest, 
and activating p53, p42/44MAPK, and JNK pathways[73]. 
Cisplatin-resistant lung cancer cells A549/DPP can be 
sensitized to DADS by cotreating with small interfering 
(si)RNA BCL-2[74]. In a recent study, DADS has been 
shown to prevent cancer growth and EMT in A549 cells 
by suppressing E-cadherin and cytokeratin-18 as well as 
elevating N-cadherin and vimentin through inactivating 
Wingless and Int-1 (Wnt)/β-catenin pathway[75].

Moreover, the treatment of esophageal carcinoma 
models with DADS has been reported to cause cell death 
through the suppression of NAT and CYP2E1 expressions, 
the activation of mitochondria-apoptosis and p53/p21 
pathways, and the inhibition of Raf/mitogen-activated 
protein kinase kinase (MEK)/ERK pathway[76].

In a recent study, DADS has also been shown to prevent 
the metastasis of type  2 esophageal-gastric junction 
adenocarcinoma cells by decreasing the expression of 
matrix metalloproteinases (MMPs) and increasing the 
expression of MMP tissue inhibitors partly through 
the inactivation of NF-κB and PI3K/AKT pathways[55]. 
Furthermore, DADS inhibits the cell cycle. DADS promotes 
ROS production, causes DNA damage, upregulates miR-
34a, miR-22, and miR-200b expressions, as well as inhibits 
PI3K/AKT and Wnt/β-catenin cascades[77]. However, a 
possible resistance to DADS by gastric cancer cells has 
been found to be associated with the increase in GSH 
peroxidase or GSH levels, resulting in the alteration of 
ROS status. This suggests that the compound may not be 
fully efficient in treating this type of cancer[78]. Studies on 
skin cancer have demonstrated that DADS can prevent the 

progression of cancer by regulating cell cycle, apoptosis, 
and oxidative stress events by promoting the activation of 
p53- and p21-mediated Nrf2[42]. In brain tumors, treatment 
with DADS can effectively reduce p38 MAPK, NF-κB, and 
H-RAS expressions, increase peroxisome proliferator-
activated receptor-gamma coactivator-1α and Ca2+ levels, 
trigger G2/M arrest, and activate JNK/c-Jun pathways 
and mitochondria-dependent apoptosis, which ultimately 
result in tumor suppression[79].

Furthermore, in the treatment of cervical cancer 
with DADS, the compound inhibits cell proliferation by 
targeting TAp73/ΔNp73 status and activating p53/p21 
signaling pathways[80]. DADS induces its anticancer effects 
in bladder cancer by inhibiting N-acetyl transferase (NAT) 
activities as well as promoting ROS production and G2/M 
arrest[81]. Besides, the inhibitory effects of DADS have 
been reported in other types of cancers, including the 
suppression of EMT through MAPK/ERK inactivation 
in oral cancer, G2/M arrest in pancreatic cancer, G1/S 
arrest associated with MAPK phosphorylation in 
nasopharyngeal carcinoma, the upregulation of miR-34 
and p21 expressions and inactivation of PI3K/AKT/mTOR 
in osteosarcoma[82], as well as C-MYC, specificity protein 
1 (SP1), and MAD1-mediated attenuation of human 
telomerase reverse transcriptase (hTERT) in lymphoma. 
Overall, the role of DADS in cancer has been extensively 
studied, and numerous pathways have been implicated in 
the process. However, the research on the side effects of 
the drug and its elimination mechanisms is still lacking, 
thereby requiring further investigations.

2.1.5. Diallyl trisulfide (DATS)

Similar to DAS and DADS, DATS is an organic compound 
produced by garlic. It has immense therapeutic significance 
in different types of cancers. Dose combination also affects 
various cellular processes, including cell cycle, apoptosis, 
proliferation, EMT, and oxidative stress. Numerous in vitro 
and in vivo studies of different types of cancers have been 
conducted to investigate the drug’s potential for therapeutic 
purposes. In prostate cancer models, DATS treatment has 
been shown to promote a decrease in the expression of 
X-linked inhibitor of apoptosis protein (XIAP), an increase 
in pro-apoptotic protein Bak, JNK1-mediated activation of 
ITCH ubiquitin ligase signaling axis, JNK1/2 and ERK1/2 
activation; AKT, NF-κB, and p-STAT-3 inhibition; as well 
as G2/M arrest due to CHK1 activation and increase in p53 
and p-Cdc25C expressions[82,83].

In breast cancer, DATS treatment suppresses the 
expressions of Bcl-2, Bcl-xL, MMP-2, estrogen receptor 
(ER)-α, lactate dehydrogenase-A (LDHA), Forkhead 
box Q1 (FOXQ1), hypoxia-inducible factor (HIF)-α, and 
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thioredoxin, increases ROS generation and Bak expression, 
stimulates activator protein (AP)-1 and apoptosis signal-
regulating kinase (ASK)1-JNK-Bim signaling axis, 
and deactivates transforming growth factor (TGF)-β1, 
Wnt/β-catenin, NF-κB, ERK/MAPK, AKT, and Notch 
pathways[84]. In mice models, the combination of DATS and 
doxorubicin has been reported to induce multi-signaling 
targeted apoptosis, inhibit Notch and NF-κB pathways, 
and activate the p53 apoptotic axis[85]. Similarly, treatment 
with DATS in bladder cancer markedly suppresses EMT. 
DATS also elevates apoptotic activities in a caspase-
dependent manner through the inhibition of PI3K/AKT 
and the activation of JNK pathway[86].

Recent studies have reported an increase in apoptosis 
and a decrease in EMT in bladder carcinoma cells following 
DATS treatment. G2/M arrest, NF-κ2 inactivation, ATM-
mediated CHK2/Cdc25C/Cdc2 stimulation, and ERK1/2, 
JNK, and p38 phosphorylation were observed[87]. In gastric 
cancer, DATS treatment exerts pro-apoptotic properties 
by inducing mitotic arrest through ROS-dependent 
activation of AMP-activated protein kinase (AMPK) 
pathway, regulating apoptotic markers[88], and reducing 
ROS, sulfiredoxin, and malondialdehyde (MDA) levels. 
DATS also sensitizes gastric cancer cells to docetaxel and 
cisplatin by elevating the levels of metallothionein 2A, 
which leads to NF-κB pathway inhibition, and inhibiting 
Nrf2/AKT as well as activating p38MAPK/JNK signaling 
cascades, respectively[89].

Besides that, in the treatment of osteosarcoma with DATS, 
the compound also suppresses tumor growth by targeting 
G0/G1 through decreasing cyclin D1 and upregulating 
p21 and p27 by ROS-mediated PI3K/AKT inhibition[90]. 
DATS also suppresses P-gp and glucose-regulated protein 
78, switches microRNA levels, downregulates NF-κB and 
Notch 1 pathways, as well as upregulates the expression 
of Ca2+-binding protein calreticulin[91]. A recent study has 
also reported the downregulation of vimentin and Bcl-2 as 
well as the upregulation of Bax, Bak, and E-cadherin due 
to PI3K/AKT/GSK3β inhibition following the treatment of 
osteosarcoma cells with DATS[92].

Otherwise, in the treatment of lung cancer with 
DATS, the compound promotes DNA damage and 
apoptosis through the elevation of caspase-3,  -8,  -9, Bax, 
and Bak; the attenuation of Bcl-xl and Bcl-2 proteins; as 
well as the induction of JNK, p53, and p38 pathways[93]. 
DATS can also potentiate its protective effect in lung 
cancer by suppressing Wnt/β-catenin[94]. Furthermore, 
its modification with extracellular microparticle carriers 
enhances anti-inflammatory and ROS activities by 
suppressing S100 calcium-binding protein A8/A9, serum 
amyloid A, fibronectin, IL-6, and toll-like receptor-4. In 

thyroid carcinoma, it has been found that the induction of 
apoptosis is associated with the activation of ERK, JNK, 
and MAPK pathways, G2/M arrest through ATM and 
H2AX phosphorylation, and a positive feedback loop 
due to a rise in H2S and CSE levels, resulting in NF-κB 
hyperactivation[95]. It has been shown that treating colon 
cancer cells with DATS can significantly promote cell 
death and reduce migration activities by inhibiting focal 
adhesion kinase (FAK), Src, and Ras, facilitating G1/S 
arrest by oxidating β-tubulin, ROS production, and 
mitochondria-mediated apoptosis[96].

The elevation of Ca2+ levels, the generation of ROS, 
the downregulation of antiapoptotic proteins, integrins, 
and FAK, and the activation of caspases and p53 pathway 
have been observed in skin cancer cells following DATS 
treatment[97]. Likewise, DATS improves the anticancer 
effects of cisplatin in ovarian cancer cells (SKOV-3)[98]. In 
leukemia, DATS treatment suppresses cancer progression 
by triggering G0/G1 arrest and caspase activation, the 
disruption of mitochondria potential due to high ROS 
levels[99], and the dimerization of heat shock protein 
(HSP)-27. In brain cancer, DATS reduces migration and 
proliferation activities by suppressing Wnt/β-catenin, 
mTOR, EGFR, C-MYC, active Bcl-2, and HDAC activity, 
and increasing histone acetylation and p21/p53 levels[100].

In pancreatic cancer, lymphoma, and nasopharyngeal 
carcinoma, DATS induces apoptosis through p53 elevation, 
TRAF-6 degradation and NF-κa inactivation, as well as 
caspase-8 and MAPK pathway activation, respectively[101]. 
Collectively, the above data confirms the potential of DATS 
in cancer treatment by targeting numerous vital signaling 
pathways associated with proliferation and migration 
activities. However, the research on the possible side effects 
and mode of action of this drug is still lacking regardless 
of the possibility. Figure 2 explains the signaling pathways 
involved in the apoptosis induction effect of DATS 
exposure.

2.1.6. Sulforaphane (SFN)

SFN is a sulfur-rich isothiocyanate (ITC) member 
commonly found in cruciferous vegetables, such as broccoli 
and cabbages. The compound is known to have anticancer 
properties. In a study, SFN has been reported to have a potent 
inhibitory effect in bladder cancer cells, which is associated 
with the suppression of growth promoters such as survivin, 
EGFR, and human epidermal growth factor receptor 2 
(HER2)[102]. Treating bladder cancer cells with SFN also 
upregulates insulin-like growth factor (IGF)-binding 
protein-3, caspase-3, cyt c, and cell cycle inhibitor p27, 
resulting in G0/G1 arrest, as well as induces ROS-dependent 
mitotic arrest, Nrf-2 activation, HDAC inhibition[103], NF-κB 
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deactivation, and cyclooxygenase (COX)-2 suppression 
through the elevation of p38 expression and activities. In 
addition, by downregulating COX-2 and upregulating 
miR-200c, SFN suppresses several EMT markers, including 
MMP-2, -9, Snail, and zinc-finger E-box-binding homeobox 
1[104]. In recent studies, SFN has been shown to prevent the 
progression of bladder cancer by regulating the composition 
of gut bacteria and protecting the gut barrier, increasing 
the expression of FAT atypical cadherin[105], as well as 
downregulating HIF-1α expression and activities, thereby 
reducing glycolysis. The chemoresistance against everolimus, 
an mTOR inhibitor, and the upregulation of integrins α6, αV, 
and β1 in bladder cancer can be prevented by cotreatment with 
SFN[106]. In colon cancer, SFN promotes apoptotic activities 
by arresting cells at G1 and inhibiting ERK1/2 and AKT 
kinases, activating caspase-3 and chromatin condensation, 
upregulating p27 through S-phase kinase-associated protein 
inhibition, phosphorylating stress-activated protein kinase 
and suppressing C-MYC, overexpressing p21 and inducing 
G2/M arrest, activating MAPK pathways, suppressing 
HIF-1α and VEGF expressions, as well as increasing ROS 
generation[107]. Moreover, further studies have indicated 

that SFN treatment can also suppress the proliferation and 
metastasis of colon cancer by promoting Nrf2 expression 
through demethylation of its promoter, upregulating 
NmrA-like redox sensor 2, pseudogene and pseudogene 
activating ROS/p38 axis, and downregulating COX-2/
microsomal prostaglandin E synthase-1 cascades as well as 
HDAC, hTERT, and miR-21 expressions. SFN also induces 
the downregulation of pro-inflammatory markers in colon 
cancer cells[108,109].

In breast cancer, SFN has been reported to prevent 
cell progression through the upregulation of early growth 
response 1 and thioredoxin reductase 1 expression and 
redox status, a reduction in the phosphorylation of AKT and 
S6K1 kinases, and a suppression in the expression of SERTA 
domain containing 1, cyclin D2, and HDAC 3, resulting in 
G1/S arrest[110]. In addition, the treatment of TNBC stem cells 
with SFN promotes cell death by inhibiting the expressions 
of Nanog, aldehyde dehydrogenase 1A1, Wnt3, Notch 4, 
and Crypto/Alk4 protein complex formation[111]. Moreover, 
in the treatment of gastric cancer with SFN, the compound 
inhibits the progression of cancer by mediating the induction 

Figure 2. A schematic diagram of the signaling pathways involved in the apoptosis-induction effect of DATS exposure. DATS: Diallyl trisulfide, ROS: 
Reactive oxygen species, JNK: c-Jun N-terminal kinase, AP-1: Activator protein-1, ERK: Extracellular signal-regulated kinases, Bcl-2: B-cell lymphoma-2, 
Bax: Bcl-2-associated X protein, AKT/PKB: Protein kinase B, PARP: Poly-ADP-ribose polymerase.
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of G2/M arrest through the activation of mitochondria 
apoptotic pathway, p21 upregulation, and histone H3 
phosphorylation, accompanied by the activation of ROS-
AMPK pathway[112]. In addition, SFN causes cell death by 
inducing cell cycle arrest at the S phase through p21/53 
upregulation and reducing the expressions of suppressor of 
variegation, enhancer of zeste, trithorax (SET) and myeloid-
Nervy-DEAF1 domain-containing 3, myosin regulatory 
light chain 9, as well as cysteine-rich angiogenic inducer[113]. 
SFN also promotes the maturation of miR-29a-3p, reduces 
COL3A1 and COL5A1, inhibits the Wnt/β-catenin pathway 
phosphorylation of MAPK, deactivates EGFR and p-ERK1/2, 
and inhibits the Sonic hedgehog pathway[114].

In prostate cancer, SFN treatment facilitates apoptosis 
by increasing mitochondria ROS, apoptotic protease-
activating factor-1, and Bax expression, and reduces the 
expression of phosphoglucomutase 3, the activation of 
caspases, the upregulation of Nrf2, the demethylation of 
cyclin D2, the suppression of androgen receptors, and 
the inhibition of STAT-3, HDAC6 deacetylase, ERK1/2, 
hTERT, and C-MYC[115,116]. In a recent study, treatment 
with N-acetyl-L-cysteine has been reported to inhibit fatty 
acid metabolism by acetyl-CoA carboxylase and fatty acid 
synthase suppression, which, in turn, inhibits prostate cancer 
inhibition[117]. SFN also induces the acetylation of histone 
H3 and H4, which leads to cell cycle arrest[118]. SFN has also 
been demonstrated to exert an inhibitory effect on ovarian 
cancer cell proliferation by attenuating retinoblastoma 
protein phosphorylation and E2F-1 expression[119]. Besides, 
SFN also triggers G1/G2/M arrest and inhibits the PI3K/
AKT pathway[120]. In recent studies, SFN has been shown to 
increase the sensitivity of ovarian cancer cells to cisplatin by 
inhibiting NF-κB, HER2, and C-MYC as well as upregulating 
p53, p27, Bax, and miR-30a-3p, thus facilitating DNA 
damage[121]. In neuroblastoma, SFN promotes anticancer 
activities through caspase-dependent apoptosis, which is 
mediated by MEK/ERK activation[122]. Furthermore, in 
HCC, SFN reduces the expressions of Bcl-2, HIF-1α, and 
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4, 
increases the expression of caspase-3 and Bax, as well as 
activates Nrf2, p38, and ERK pathways to mediate cancer 
cell death[123]. SFN also activates Nrf2/antioxidant response 
element/heme oxygenase-1, inhibits STAT3/HIF-1α/VEGF, 
and ROS dependently inactivates TGF-β pathway and 
hTERT expression in HCC cells. SFN treatment significantly 
increases the demethylation of histone H4 on arginine 3 
(H4R3me2s) in epidermal squamous cell carcinoma through 
the alleviation of protein arginine methyltransferase-5 and 
methylome protein 50 expressions[124].

In lung cancer, SFN upregulates the expressions of p21, 
p73, p53 upregulated modulator of apoptosis, Bax, cyclin D1, 

cyclin K, and caspases and downregulates the expressions 
of EGFR, cyclin B1, and Bcl-2[125]. SFN also suppresses 
miR-616-5p expression through histone modification, 
deactivates the GSK3β/β-catenin pathway to inhibit EMT 
and reduce stem cell-like properties in lung cancer cells, 
sensitizes lung cancer cells to treatments by upregulating 
miR-214, and inhibits IL-6/ΔNp63α/Notch pathways[126]. 
In nasopharyngeal carcinoma, SFN suppresses malignancy 
by preventing the reactivation of the Epstein–Barr virus 
lytic cycle, increases the expression of Wnt inhibitory 
factor 1, inhibits DNA methyltransferase 1, and inhibits the 
activation of STAT-3 through the upregulation of miRNA-
124-3p[127]. Besides, in salivary gland adenoid cystic 
carcinoma, SFN treatment induces anticancer activities 
by mediating G2/M arrest, accompanied by the decrease 
in cyclin B1 and CDK1, the increase in caspases and Bax, 
and ultimately the inhibition of NF-κ pathway[128]. Overall, 
the effect of SFN on cancer suppression has been explicitly 
elaborated in different types of cancers, with the critical 
cellular markers and processes affected being identified. 
With the new focus on the drug clearance mechanism and 
potential side effects, vital information that might be useful 
in clinical application can be obtained.

2.1.7. 4-methylthiobutyl isothiocyanate (erucin)

Another common ITC compound is erucin. The protective 
power of this compound in cells is essentially attributed to 
its H2S moiety. In addition to other mechanisms, erucin acts 
by regulating apoptosis and inflammatory processes[129]. In 
colon cancer, HCC, bladder cancer, prostate cancer, and lung 
cancer, treatment with erucin suppresses tumor growth and 
metastasis by promoting AKT and ERK phosphorylation 
and DNA damage, as well as blocking cell cycle at G2/M 
phase and p21/53 overexpression, respectively[130]. Erucin 
induces cell death in KRAS-mutated pancreatic cancer 
cell line AsPC-1 by suppressing ERK phosphorylation, 
which is a crucial mechanism to counteract KRAS-
associated carcinogenic features associated with MAPK 
hyperphosphorylation[131]. Besides, treatment with 
erucin can effectively suppress carcinogenic activities by 
suppressing telomerase activities in ovarian cancer[132]. 
In breast cancer, erucin improves microtubule stability, 
induces cell cycle arrest, mitochondria translocation of 
cofilin and dynamin-related protein, mitochondria fission, 
and the downregulation of HER2 and S6 ribosomal protein 
phosphorylation[133]. Overall, erucin treatment exhibits 
anticancer activities in different cell types through a variety 
of mechanisms that are altered in cancer.

2.1.8. Allyl isothiocyanate (AIC)

AIC, a natural anti-inflammatory and anticancer 
compound, has been shown to have significant anticancer 
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effects. In breast cancer, AIC induces cell death by activating 
both mitochondria-dependent and  -independent 
pathways[134]. G2/M arrest, ERK activation, and NF-κB 
inhibition have also been observed in breast cancer cells 
following AIC treatment[135]. However, in a recent study, 
AIC could not potentiate any significant apoptosis and 
its treatment yielded in the upregulation of antiapoptotic 
marker Bcl-2 and MTOR gene[136]. The reason behind this 
discrepancy is yet to be determined. Besides, in cervical 
cancer, oral cancer, lung cancer, and glioma, treatment 
with AIC significantly attenuates Bcl-2/Bax status, 
activates caspases, and promotes S/G2/M arrest, thus 
potentiating its anticancer effect[137]. In bladder cancer, 
AIC promotes pro-apoptotic activities by facilitating the 
activation of JNK, the phosphorylation of Bcl-2, and cell 
cycle arrest[138]. In a recent study, treatment with AIC 
nanoparticles in bladder cancer cells has demonstrated 
that AIC nanoparticles inhibit cell proliferation more 
potently compared to AIC by targeting pro-inflammatory 
markers, such as IL-6, tumor necrosis factor (TNF)-α, and 
inducible nitric oxide synthase (iNOS)[138,139]. Treatment 
with AIC also suppresses EMT events in HCC cells[139]. 
Moreover, in CRC, the antimetastatic effects of AIC have 
been reported to be associated with mitotic arrest, Ca2+ 
release, growth arrest and DNA damage inducible protein 
153 (GADD153) activation, and the suppression of MMP 
expression and MAPK pathway[140]. Overall, AIC has 
shown potential in cancer treatment, although further 
studies are needed to understand the mechanisms involved 
and its clearance mechanism.

2.1.9. Benzyl isothiocyanate (BITC)

BITC is another natural H2S donor and ITC derivative, 
which is strongly linked with cytoprotection and anti-
carcinogenesis. The anticancer effect of BITC has been 
well-documented in several papers. In bladder cancer, 
BITC has been shown to reduce the incidence of cancer 
in mice that are treated with the carcinogenic compound 
N-butyl-N-(4-hydroxybutyl) nitrosamine and in cellular 
models through the upregulation of miR-99a-5p through 
ERK/c-Jun/AP-1 activation, which, in turn, downregulates 
the expressions of IGF1R, mTOR, and fibroblast growth 
factor receptor 3 cascades and reduces cell survival[141]. 
BITC treatment also promotes ROS production, G1 
arrest, and protective autophagy through mTOR 
inhibition[142]. In breast cancer, treatment with BITC can 
effectively suppress pro-survival activities by targeting 
p53/liver kinase B1 (LKB1) and p73/LKB1 cascades and 
overexpressing transcription factor Krüppel-like factor 
4 (KLF4)[143]. In addition, BITC can prevent osteoclast 
differentiation in breast cancer cells by inhibiting runt-
related transcription factor 2 and receptor activator of 

NF-κF ligand[144]. The reduction of XIAP, FOXQ1, STAT-
3, AKT, TGF-β, and TNF-α expressions and the elevation 
of ROS, caspases, FOXO1, and JNK/p38 MAPK activation 
have been observed in breast cancer cells following BITC 
treatment[145]. In lung cancer, BITC has been shown to 
suppress the resistance of cells to gefitinib and promote 
autophagy, apoptosis, and ROS generation[146]. It has also 
been suggested that BITC treatment can induce oral cancer 
cell death by mediating G2/M arrest and DNA damage 
by elevating pro-apoptotic markers and decreasing 
antiapoptotic ones[147]. In head-and-neck squamous cell 
carcinoma, BITC can suppress EMT markers such as 
vimentin and activate pro-apoptotic markers such as 
caspase-3 and poly-ADP ribose polymerase (PARP), thus 
resulting in anticancer activities[148].

Moreover, in HCC, BITC treatment has been reported to 
have anti-survival effects due to the reduction of MMPs and 
MAPK pathways[149]. In pancreatic cancer, BITC treatment 
can suppress the expressions of antiapoptotic proteins such 
as XIAP, p-PI3K, p-AKT, p-mTOR, p-FOXO1, p-FOXO3a, 
p-STAT-3, and NF-κB as well as activate MAPK pathways, 
resulting in increased cellular apoptosis and decreased 
angiogenesis[150,151]. Besides, BITC has antiproliferative 
effects when used to treat gastric cancer. These effects are 
associated with the inhibition of ERK1/2, Ras, iNOS, and 
COX-2 as well as the activation of death receptors[152]. The 
above evidence validates the potential of BITC in cancer 
treatment; however, further investigations are needed to 
understand the mechanisms of action for this donor and 
how H2S moiety participates in ROS generation.

2.1.10. Phenylethyl isothiocyanate (PEITC)

PEITC is a slow-releasing H2S donor and a member of ITCs. 
The donor works by regulating the cell cycle and oxidative 
stress, ultimately causing apoptosis. In oral cancer, PEITC 
has been reported to suppress the expressions of pro-
migration markers, such as MMP-2 and -9, and increase 
the expressions of tissue inhibitor matrix metalloproteinase 
(TIMP)-1 and TIMP-2 by inhibiting several pathways, 
including MAPK, NF-κB, and EGFR signaling cascades[153]. 
PEITC also induces cell death by activating mitochondria-
apoptotic pathways, death receptors, p21/53, and cell cycle 
arrest[154]. In glioblastoma, PEITC promotes apoptosis, 
cell cycle arrest, and anti-EMT activities through the 
activation of intrinsic and extrinsic pathways, along with 
the downregulation of MMPs, CDC20, cyclin B1, MCL-1, 
and XIAP expressions[155]. Similarly, PEITC treatment has 
also been shown to inhibit death receptors and activate 
TGFβ/Smad2 signaling pathways in cervical cancer[156]. 
In the treatment of gastric cancer with PEITC, the latter 
inhibits the expressions of MMPs, FAK, Ras, growth 
factor receptor-bound protein   2, COX-2, and VEGF 
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as well as disrupts microtubules to promote apoptosis 
and anti-migratory events[157]. In colon cancer, PEITC 
inhibits NF-κB, AKT, ERK, and JNK to mediate anticancer 
properties[158]. The treatment of ovarian cancer cells with 
PEITC has revealed that the latter exhibits pro-apoptotic 
activities through the activation of caspases, p38, and JNK, 
and the inactivation of AKT/ERK1/2 and CRM1-mTOR/
STAT3 pathways[159].

In lung cancer, PEITC treatment promotes G2/M arrest, 
elevates cleaved caspase-3, PARP, GADD153, endonuclease 
G, and Bax, and inactivates the Janus kinase 2 (JAK2)/
STAT3 pathway, thus facilitating cell death and reducing 
migration activities[160]. In melanoma, PEITC induces cell 
death through the activation of mitochondria apoptosis 
and the elevation of ROS level[161]. Moreover, PEITC 
administration suppresses Bcl-2 and Bcl-xL, elevates Bak, 
inhibits Notch 1 and 2 cascades in pancreatic cancer, and 
inhibits Wnt/β-catenin in CRC[162]. In prostate cancer, 
PEITC treatment decreases the expressions of CDK1, 
cyclin B1, CDC25C, α/β-tubulin, surviving, and XIAP, and 
increases the expressions of miR-194, caspases, p53, and 
WEE1 to mediate anticancer activities[148]. Furthermore, 
PEITC induces cell apoptosis in breast cancer cells 
through the elevation of p53, the suppression of ER-α36, 
metadherin, HER2, EGFR, and STAT-3 expressions, and 
the reactivation of cadherin[148,163]. The above data suggests 
that PEITC has potential in cancer treatment; however, 
little is known concerning the drug’s mode of action and 
clearance mechanism.

2.1.11. N-acetyl cysteine (NAC)

NAC is a H2S donor and a precursor for L-cysteine and 
reduced GSH. It is a cytoprotective compound with potent 
antioxidant properties[164]. NAC-derived cysteine releases 
H2S in the mitochondria, elevating 3-MPST and sulfide 
quinone oxidoreductase (SQR), which are the potential 
upstream regulators of sulfane sulfur species[165]. In a 
recent study, NAC has been shown to serve as a substrate 
for 3-MPST and SQR in colon cancer cells. However, 
the event did not significantly alter their viability and 
rate of proliferation[166]. In contrast, NAC-mediated 
elevation of 3-MPST activities and intracellular H2S level 
exhibits antiproliferative properties in neuroblastoma 
cells (SH-SY5Y)[167]. Besides, NAC can reverse the anti-
tumor effect of xanthatin, including G2/M arrest and 
ROS-mediated autophagy and apoptosis, in colon cancer 
cells[168]. In gastric cancer, NAC promotes SJ-89 cell 
cycle arrest, apoptosis, and DNA damage[169]. Further 
evidence has shown that NAC treatment can suppress the 
metastasis and glycolysis of gastric cancer cells, resulting 
from autophagy inhibition-mediated ROS, through the 
deactivation of NF-κB and HIF-1α[170]. Cotreatment 

with NAC, however, may restore pro-cancer properties 
following treatment with anticancer drugs that initially 
work by raising ROS levels, such as piperlongumine.

Meanwhile, the combination of NAC with bromelain 
shows more potency in inhibiting the growth of 
gastrointestinal cancer by facilitating caspase-dependent 
apoptosis and autophagy[171]. Moreover, a clinical trial 
has revealed that the administration of NAC can reduce 
oxaliplatin-induced neuropathy in CRC and gastric cancer 
patients[172]. In lung cancer, individual treatment with NAC 
has pro-cancer effects that are associated with reduced 
ROS, p53 activity, and DNA damage; however, when 
administered in combination with other therapeutics, 
it shows solid anticancer activities[173]. NAC enhances 
glioblastoma cell death in an antioxidant-independent 
manner by facilitating lysosomal degradation of Notch 2 
cascade, thus resulting in the attenuation of the pathway[174]. 
In gastric cancer cells, NAC can effectively attenuate ROS-
induced apoptosis, triggered by anticancer drugs like 
curcumin[175].

In human breast cancer MDA-MB-435 cells, treatment 
with NAC induces cell death and vascular collapse by 
promoting apoptosis and the production of antiangiogenic 
mediator angiostatin, as well as shifting estrogen 
metabolism by inhibiting the formation of DNA adducts[176]. 
In addition, NAC suppresses cancer proliferation by 
attenuating Ki67 expression and the glycolysis marker 
stromal monocarboxylate transporter 4[177]. However, there 
have been conflicting studies, wherein NAC treatment, 
combined with other potential anticancer drugs, can either 
enhance or suppress the drug’s cytotoxicity[178]. The mode 
of action of the treatment plays a key role in determining 
the synergistic effect of NAC. In a recent clinical trial, oral 
administration of NAC in breast cancer patients effectively 
reduced paclitaxel-induced peripheral neuropathy and 
improved the quality of life in these patients[179]. Moreover, 
NAC treatment also exhibits anticancer effects in bladder 
cancer linked with the activation of caspases, cell cycle 
arrest, and suppression of metastasis through MMP-2 
downregulation[180]. In bladder cancer, the co-treatment 
of cis-dichlorodiammineplatinum and GSH with NAC 
significantly reduces ROS generation from the initial 
treatment, suggesting the restoration of carcinogenesis[181].

In prostate cancer, NAC treatment suppresses cancer 
metastasis through ROS regulation, CYR61 upregulation, 
NF-κB inhibition, and the partial activation of AKT and 
ERK1/2[182]. In addition, the pro-inflammatory effects of 
cisplatin and etoposide (VP-16) may be suppressed by 
NAC[183]. Besides, in ovarian cancer, the cotreatment of 
doxorubicin with NAC enhances its anticancer effect, which 
is associated with ATM/p53 pathway activation and mTOR 



Volume 2 Issue 1 (2023)	 12� https://doi.org/10.36922/gpd.v2i1.164

Gene & Protein in Disease Therapeutic opportunities in hydrogen sulfide for cancer research

inhibition[184]. Furthermore, NAC treatment can inhibit 
radiotherapy-induced premature ovarian failure through 
the suppression of nicotinamide adenine dinucleotide 
phosphate oxidase 4 (NOX4)/MAPK/p53 pathway and the 
promotion of VEGF, thus conserving ovarian function[185]. 
In addition, NAC can reduce oxidative injury by increasing 
GSH peroxidase activity and decreasing the expression of 
nicotinamide adenine dinucleotide phosphate oxidase 
subunits (p22 and NOX4). It has also been demonstrated 
that NAC treatment can effectively attenuate cell 
invasiveness and proliferation in pancreatic cancer by 
regulating the cell cycle[186]. The combination of NAC 
with anticancer drugs, such as bromelain and curcumin, 
results in potent anticancer activities that are associated 
with attenuating migration markers such as MMP-2 and -9 
as well as suppressing ROS-induced activation of ERK/
NF-κB[187].

In HCC, treatment with NAC can restore 
intracellular GSH levels and IL-2-induced cytotoxicity of 
mononucleated cells[188]. NAC reduces liver damage and 
the incidence of post-embolization syndrome following 
transarterial chemoembolization in HCC patients[189]. In 
lung cancer, NAC adducts are significantly lowered, and its 
administration reduces the oxidative stress and senescence 
caused by the inactivation of transcription factor JunD, 
in addition to lung emphysema; however, it concurrently 
promotes the progression of cancer[190]. Briefly, these data 
suggest that NAC has inhibitory properties on different 
types of cancers. Its combination with other drugs may 
further enhance/attenuate the effect, depending on the 
drug’s mode of action. Besides, the cotreatment of NAC 
with for drugs that initially work by facilitating ROS 
generation may not be a good option due to the antioxidant 
properties of nicotinamide adenine dinucleotide (NAD).

2.2. Native compound

2.2.1. Sodium hydrosulfide (NaHS)

NaHS is a fast-releasing H2S compound and one of the 
most common donors in H2S-related research. Being a 
fast-releasing donor, it produces enormous amounts of 
H2S in a remarkably short period of time followed by a 
subsequent decline in production. Depending on the dose 
administered and the type of cancer and cell, the drug is 
known to induce dual effects; thus, there are numerous 
conflicting reports. The compound also regulates 
cellular processes, resulting in the modulation of tumor 
growth and sensitivity to drugs[191]. In a glioblastoma 
model, treatment with NaHS facilitated tumor growth 
in the animal model by upregulating HIF-α expression 
and in C6  cells by activating the p38MAPK/ERK1/2/
COX-2 signaling axis[192]. However, another study has 

suggested that the treatment with NaHS promotes 
apoptotic activities through the activation of p38 and p53 
cascades in C6 cells[193]. Similarly, in colon cancer, NaHS 
treatment promotes cancer progression and metastasis 
by upregulating the expressions of SIRT-1, p-AKT, and 
p-ERK as well as downregulating p21[194]. In a recent study, 
NaHS reduced cell proliferation in CRC, but it did not 
induce apoptosis by upregulating Ca2+ levels through the 
activation of transient receptor potential cation channel 
subfamily V member 1; the effect was only observed in 
metastatic cells but not in normal cells[195].

In multiple myeloma and oral squamous cell carcinoma, 
NaHS exhibits pro-cancer effects by promoting the 
phosphorylation of AKT and ERK1/2 cascades[196]. Moreover, 
it promotes cancer metastasis through the activation of HSP-
90 and JAK2/STAT-3 in esophageal carcinoma EC109 cells; 
NF-κB, STAT-3/COX-2, and HIF-α/adenosine triphosphate-
sensitive potassium channel activation in HCC; and the 
upregulation of MMP-2/-9 in bladder cancer EJ cells[197]. 
Alternatively, in lung cancer, treatment with NaHS alleviates 
carcinogenic activities, including EMT, through TGF-β1/
Smad2/Smad3 suppression and the activation of caspase-3, 
p21, and p53 cascades[198,199].

NaHS also inhibits the proliferation of melanoma 
cells by blocking PI3K/AKT/mTOR activation and breast 
cancer cells by inducing G0/G1 arrest and p-p38 MAPK 
inhibition. In neuroblastoma, treatment with NaHS 
suppresses adenylyl cyclase and γ-secretase, reduces 
intracellular cyclic adenosine monophosphate levels and 
dynamin-like protein expression, and increases ERK 
phosphorylation[199,200]. These data imply that H2S has a role 
in cancer progression; however, the potential of NaHS for 
cancer treatment is relatively insignificant.

2.2.2. Sodium sulfide (Na2S)

Na2S is another fast-releasing H2S-donating compound 
that is associated with cancer therapeutics. In CRC 
patients, Na2S treatment in human mesenteric arteries 
results in the relaxation of vessels by targeting potassium 
ion (K+) channels[201]. The compound has been reported 
to selectively kill glioblastoma T98G and U87 cells, while 
showing no effect in cerebral microvascular endothelial cells 
(D3), through a mechanism that involves the elevation of 
ROS levels and the suppression of mitochondria activities, 
resulting in DNA damage and subsequent cell death[202]. 
In addition, Na2S treatment also sensitizes glioblastoma 
cells to radiotherapy[203]. In an earlier study, the anticancer 
effect caused by the inhibition of CBS in ovarian cancer 
was found to be reversible with low doses of Na2S

[204]. 
Despite the fact that there are only a number of studies on 
Na2S, evidence has indicated that Na2S has protective and 
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robust anticancer effects. However, its inability to imitate 
the physiological production of H2S affects its applicability.

2.2.3. Other metal sulfides

Apart from Na2S, sulfides of other metals, such as calcium 
and copper, also have anticancer properties, as witnessed 
in experimental settings. Although there are no existing 
studies on individual drug administration containing 
the aforementioned metal sulfides in cancer; their 
nanoparticle formulations have been well-documented. 
Calcium sulfate (CaS) nanoparticles are known to trigger 
cell cycle arrest and induce apoptosis in lung cancer cells, 
but no significant effect has been reported in normal 
cells[205]. Similarly, copper sulfate (CuS) nanoparticles have 
been reported to possess the ability to target tumor cells 
and penetrate their nucleus by modifying surface peptides 
RGD and TAT[206]. In a study, the cotreatment of CuS 
nanoparticles with 980 nm near-infrared laser irradiation 
causes cell death by increasing the temperature of the 
nucleus and destroying the genetic materials. In cervical 
cancer cells, CuS nanoparticles have been shown to induce 
a concentration-dependent photothermal destruction 
with low cytotoxicity[207]. The evidence suggests that 
metal sulfides are useful as H2S donors and have a role in 
cancer suppression; however, further research is needed to 
illuminate the mechanisms involved and side effects.

2.3. De novo design

2.3.1. Morpholin-4-ium 4 methoxyphenyl(morpholino)
phosphinodithioate (GYY4137)

GYY4137 is the most common synthetic slow-releasing 
H2S donor in research. It is soluble in water and exhibits 
a strong anticancer effect in both cellular and animal 
models. In various cellular models of cancer, including 
prostate, cervical, lung, breast, and ovarian cancer, 
treatment with GYY4137 can effectively promote pro-
apoptotic activities by increasing lactate production, 
reducing intracellular pH levels, and facilitating G2/M 
arrest[208]. In CRC, treatment with GYY4137 promotes cell 
cycle arrest, apoptosis, and necrosis[209]. In addition, drug 
causes intracellular acidification in both ovarian and CRC 
cancer, due to uncoupling of sodium-calcium exchanger 
1 and sodium-hydrogen exchanger1 channels[210]. 
Treating colon cancer cells HCT116 with GYY4137 
also increase LDHA activity and induce concentration-
dependent cell death by inactivating cGMP/VASP, AKT, 
and p44/42 MAPK (ERK1/2) pathways[187]. Moreover, in 
HCC, GYY4137 upregulates caspases and blocks STAT-3 
activation, thereby inducing G1/S arrest and cell death[211]. 
In a recent study, GYY4137 has also been shown to protect 
neuroblastoma cells against lipopolysaccharide-induced 
elevation of inflammatory activities[212]. The above data 

suggest that GYY2137 could serve as a potential anticancer 
drug. However, further research is needed to investigate 
the mechanism of action, cellular marker, and signaling 
pathways involved.

2.3.2. 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione 
(ADT-OH)

ADT-OH is an artificial H2S donor with significant 
chemoprotective effects against cancer cells. It is an 
extraction from amphiphilic block copolymers containing 
an ester bond linking ADT-OH using isoleucine and glycine 
linkers[213]. In a recent study, treating melanoma cells with 
ADT-OH have been shown to inhibit the progression 
of cancer by downregulating XIAP and Bcl-2 as well as 
stabilizing Fas-associated protein with death domain and 
IκB-α, resulting in NF-κB inactivation[214]. Furthermore, 
connecting ADT-OH with hyaluronic acid forms another 
novel H2S donor (HA-ADT), which can produce more H2S 
and induce more anticancer effects in breast cancer than 
commonly used donors, such as NaHS and GYY4137[215]. 
This effect is associated with the deactivation of PI3K/
AKT/mTOR and RAS/RAF/MEK/ERK  pathways. The 
above evidence supports the use of H2S in the treatment of 
cancer and suggests that newly synthetic donors with high 
efficiency could be the key.

2.3.3. S-propargyl-cysteine (SPRC)

SPRC, also known as ZYZ-802, is a structural analog of 
S-acetyl cysteine and a crucial substrate for CSE, thus 
making it an endogenous H2S donor. Like other H2S donors, 
SPRC regulates cellular activities, including inflammation, 
apoptosis, and oxidative stress. In a mice model of gastric 
cancer implants, treatment with SPRC significantly 
reduced tumor weight and volume by promoting pro-
apoptotic activities in cancer tissues through the elevation 
of Bax expression, cell cycle arrest at G1/S phase, and the 
activation of p53 pathway[216]. The anticancer effects of 
SPRC can be reversed with peginterferon alfa-2a (PAG) 
treatment. Likewise, in pancreatic cancer, treatment with 
SPRC causes the inhibition of cell viability and proliferation 
by triggering G2/M arrest and apoptosis through the 
upregulation of p53 and a reduction in JNK degradation 
through phosphorylation[217]. From the information above, 
SPRC has shown potential in cancer treatment; however, 
a dearth of research has limited its applicability in clinical 
settings.

2.3.4. (10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl) 
phenoxy) decyl) triphenylphosphonium bromide 
(AP39)

AP39 is a compound that targets mitochondria through 
triphenylphosphonium moiety and releases H2S inside the 
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organelle. According to preliminary studies, H2S induces 
cytoprotective effects by promoting oxidative stress, 
apoptosis, and inflammation[217]. Treatment with AP39 has 
been shown to increase the population of early and late 
apoptotic cells among colon cancer cells[218]. In addition, 
it also protects against doxorubicin-induced cardiotoxicity, 
which is associated with mitochondrial toxicity and 
a decrease in H2S level[219]. Despite the lack of vital 
information on the mechanisms and pathways targeted by 
this donor in different types of cancers, the available data 
suggest a potential anticancer effect and protective effect 
when combined with other drugs.

2.3.5. Ammonium tetrathiomolybdate (ATTM)

ATTM is a slow-releasing inorganic H2S donor with 
cytoprotective capability. The chemical formula of 
ATTM is (NH4)2MoS4. ATTM has been shown to exert 
antioxidant effects at lower concentrations in HaCaT 
cells[220]. Treating pancreatic cancer cell lines with ATTM 
dose and time dependently reduces intracellular high 
affinity copper uptake protein 1, VEGF, and cyclin D1 
expressions, thus mediating anticancer activities[221]. 
In head-and-neck squamous cell carcinoma, ATTM 
has been reported to suppress resistance to cisplatin by 
attenuating the progression of cancer by downregulating 
the expression of ATPase copper transporting beta 
(ATP7B)[222]. Similarly, in breast cancer, treatment with 
ATTM reduces the expression of ATP7A, a copper ATPase 
transporter that is involved in the intercellular movement 
and sequestering of cisplatin, thereby potentiating 
cisplatin’s nuclear bioavailability, which, in turn, promotes 
DNA damage, cell cycle arrest, and apoptosis[223]. The 
safety, tolerance, and anticancer effects of recurrent breast 
cancer in patients have been witnessed in a clinical study 
involving the drug[224]. Moreover, treating lung cancer 
cells with ATTM significantly increase the expression 
of H2S-producing enzymes CBS and 3-MPST and 
promote cancer progression at low concentrations, with 
an opposite effect at higher concentrations[225]. At lower 
concentrations, ATTM triggers YTHDF1-dependent 
PRPF6 m6A methylation through the upregulation of 
methyltransferase-like protein 3 and the downregulation 
of fat mass and obesity associated-protein (FTO). Overall, 
these data suggest that ATTM shows potential in cancer 
treatment; however, the information available on the 
mechanism of action involved is insufficient.

2.3.6. H2S-releasing nonsteroidal anti-inflammatory 
drugs (H2S-NSAIDs)

H2S-NSAIDs are H2S-moiety-containing anti-
inflammatory drugs with potent anticancer properties. 
One of the most common H2S-NSAIDs is ATB-346, 

a naproxen derivative [2-(6-methoxynapthalen-2-yl)-
propionic acid 4-thiocarbamoyl phenyl ester]. In addition 
to producing H2S, it inhibits COX-2 activity. The previous 
studies have shown that treatment with ATB-346 can 
significantly reduce colonic pre-cancerous lesions in mice, 
prostaglandin, and whole-blood thromboxane synthesis 
without causing gastrointestinal injury[226]. The anticancer 
effects of ATB-346 are associated with the inhibition of 
C-MYC and β-catenin expressions. Similarly, treating 
melanoma cells with ATB-346 inhibit pro-survival 
activities by suppressing NF-κB and AKT pathways[227]. 
This suggests that the donor ATB-346 has anticancer 
activities and can be used to treat different types of cancers.

2.4. Hydrogen sulfide-nitric oxide (H2S-NO) donors

2.4.1. NOSH-aspirin (NBS-1120)

Both NO and H2S are powerful neuromodulators, and 
their role in cancer is widely recognized. The two gaseous 
neuromodulators regulate one another. For the donor to 
logically contain the moiety for both gasotransmitters, it 
induces a more substantial regulatory effect. According 
to a previous study, NBS-1120 exhibits chemoprotective 
properties in the gastrointestinal tract, which are 
inextricably linked to its antioxidant and anti-inflammatory 
effects, thus making it superior to aspirin[228]. Moreover, 
treating colon cancer cells with NOSH-aspirin significantly 
facilitate apoptosis, G0/G1 arrest, ROS generation, and 
NF-κB deactivation[229]. Mechanistically, NOSH-aspirin 
mediates both S-sulfhydration and S-nitrosylation of p65 
NF-κB, along with the denitrosylation and desulfhydration 
of caspase-3, thereby inhibiting the activation of caspase-3 
and NF-κB[230]. According to another study, the compound 
preferentially inhibits COX-1 over COX-2, and its effect 
varies with different isomers, with the inhibitory effect 
in colon cancer ranking as follows: o-NOSH-aspirin 
> m-NOSH-sspirin > p-NOSH-aspirin[231]. In a mice 
colon cancer model, the combination of NOSH-aspirin 
with 5-fluorouracil induced a stronger effect compared to 
individual treatments and showed no side effects or weight 
loss in mice[232,233]. In breast cancer, the drug treatment 
results in tumor suppression through the reduction of 
proliferating cell nuclear antigen, an increase in cyt c, 
and ROS generation[234]. Similarly, a recent study has 
revealed that the treatment with NOSH-aspirin exerts 
anticancer effects in a mice model of pancreatic cancer 
by increasing ROS generation, caspase-3 activity, and 
mutated p53 expression, while suppressing NF-κB and 
FoxM1 expressions[235]. Overall, the above data suggest that 
NOSH-aspirin can be used to treat cancer, with minimal 
side effects and by primarily targeting the cell cycle, COX-
1/2, and ROS.

https://doi.org/10.36922/gpd.v1i3.164


Volume 2 Issue 1 (2023)	 15� https://doi.org/10.36922/gpd.v2i1.164

Gene & Protein in Disease Therapeutic opportunities in hydrogen sulfide for cancer research

2.4.2. NOSH-sulindac (AVT-18A)

Another H2S and NO donor is NOSH-sulindac. This 
compound has been shown to induce apoptosis in cancer 
cells at a relatively lower concentration than normal 
cells. The treatment of NOSH-sulindac resulted in over 
150  times cell growth inhibition in human breast cancer 
cells MCF-7, pancreatic cancer cells BxPC-3, and colon 
cancer cells HT-29 as compared to its treatment in normal 
lung cells IMR-90, pancreatic epithelial cells ACBRI 515, 
and normal breast cells HMEpC[236]. Its effect is associated 
with the suppression of pro-inflammatory TNF-α, 
oxidative marker MDA, the induction of G2/M arrest, 
and apoptosis[237]. The effect of this donor on colon cells 
has been reported to be independent of the cell’s ability to 
produce prostaglandin[238]. As of now, no mechanism has 
been found to be associated with the inhibitory effect of 
NOSH-sulindac; hence, the potential of this donor has yet 
to be determined.

With all the given findings, it is widely recognized 
that the treatment with H2S donors (exposure of H2S) 
can inhibit the proliferation of cancer cells, induce 
apoptosis, and promote cell cycle arrest, thus resulting in 
cancer cell death (Figure 3). However, there is still room 
for investigation concerning H2S donors induction, the 
initiation of cancer cell death signaling, and their causes. 
Figure 4 is a schematic presentation of exogenous H2S-
based natural and synthesized chemical compounds used 
in cancer research.

3. Targeting endogenous H2S for cancer 
treatment
3.1. CSE inhibitor

CSE is a major contributor to H2S production in numerous 
cells. Targeting this marker directly affects cell viability 
and progression. For example, CSE has been reported to be 
highly upregulated in breast cancer patients, in which the 
event positively corresponds to breast cancer metastasis by 
elevating angiogenic factor VEGF and activating various 
signaling pathways, such as PI3K/AKT, Ras/Raf/MEK/
ERK, and STAT-3[239]. By knocking down CSE in breast 
cancer cells, MDA-MB-231 significantly suppresses both 
migration and proliferation activities[240]. Treatment with 
CSE drug inhibitors, such as I157172 and I194496, potently 
suppresses CSE activities with pro-cancer events through 
the promotion of sirtuin 1 and the inhibition of STAT-3, 
VEGF/FAK/paxillin, PI3K/AKT, and Ras/Raf/MEK/ERK 
pathways[241]. Similarly, CSE has a pro-cancer effect in gastric 
cancer; its inhibition prevents cell growth and metastasis 
through promoting apoptosis and improving anticancer 
drug sensitivity[242]. SP1-dependent activation of PI3K/
AKT pathway in HCC cells has shown that it acts through 

CSE to enhance tumorigenesis[243,244]. Simultaneously, the 
inhibition of CSE suppresses EMT markers and EGFR 
though ERK1/2 inactivation, thus resulting in cancer 
suppression[245]. Knocking down CSE also increases 
radiosensitivity and reduces radiation-mediated promotion 
of EMT by blocking the p38 MAPK pathway[246]. However, 
a recent study has revealed that the inhibition of CSE in 
mice negatively regulates the immunosuppressive enzyme 
indoleamine 2,3-dioxygenase   1, creating an immune-
tolerant tumor microenvironment. This event can be 
reduced by overexpressing CSE or increasing H2S levels[247]. 
This negative correlation can also be confirmed in clinical 
samples. These conflicting results show a need for further 
studies on cancer and the role of CSE. In colon cancer, the 
activation of Wnt/β-catenin pathway is associated with the 
upregulation of CSE expression.

In a study, the proliferation of SW480  cells was 
significantly reduced by CSE-knockdown, suggesting the 
enzyme’s potential role in colon cancer metastasis[248]. CSE-
mediated production of H2S has been reported to promote 
the progression of prostate cancer through the activation of 
Cav3.2 and IL-1β/NF-Κb cascades, whereas CSE inhibition 
results in anticancer effects in PC-3 cells[249]. Overall, the 
above data suggest that CSE inhibitors have the potential 
to be anticancer drugs in certain types of cancers; however, 
less is still known about their mechanism of action, clinical 
applicability, and possible side effects.

3.2. CBS inhibitor

CBS is also a key player in cancer activities. Therefore, 
understanding its inhibition effect on cancer is of 
paramount importance. It has been previously reported 
that CBS is highly upregulated in gastric cancer tissues 
compared to non-cancerous ones. Its inhibition with 
amino-oxyacetic acid (AOAA) enhances the anticancer 
effects of 3,3’-diindolylmethane by activating the p38/p53 
axis[250]. Similarly, in another study, tissue samples of breast 
cancer patients exhibited high levels of CBS compared to 
normal tissues. Further examination had revealed that 
silencing CBS causes a significant reduction in cell growth 
and progression of breast cancer cells[251]. The inhibition 
of CBS also attenuates the antioxidant pathway Nrf2 and 
sensitizes the cells to doxorubicin[252].

Besides that, CBS modulates cancer cells by regulating 
nicotinamide phosphoribosyltransferase and ATP 
activities[253]. In HCC patients, low CBS mRNA expression 
correlates with higher disease progression stages and shorter 
overall survival[254]. However, the increased expression of 
CBS as a result of hypoxia-induced radioresistance can 
be attenuated following treatment with a CBS inhibitor 
and AOAA in HepG2 cells[255]. CBS has been found to be 
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Figure 4. A schematic presentation of exogenous H2S-based natural and synthesized chemical compounds used in cancer research: (a-i) natural world; 
(j-n) native compound; (o-w) de novo design.

Figure 3. Proposed mechanism of H2S effect on cell cycle arrest in cancer cells. H2S increases ROS levels and disrupts Ca2+ homeostasis, leading to high 
intracellular Ca2+ with increased expression of p21 and p27, which can result in cell cycle arrest. H2S: Hydrogen sulfide, ROS: Reactive oxygen species, 
MMP: Matrix metalloproteinase, G1: Pre-synthetic phase, S: Synthetic phase, G2: Post-synthetic phase, M: Mitotic phase.
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upregulated in hepatoma cells SMMC-7721 and HepG2 
but downregulated in BEL-7404 compared to normal cells 
HL-7702 and QSG-7701[237]. In addition, the silencing of 
CBS through siRNA or pharmacological inhibitors, AOAA 
and quinolone-indolone conjugate, effectively induced an 
anticancer effect in SMMC-7721 by promoting oxidative 
stress and activating caspase-3.

Besides, treatment with another inhibitor of CBS, 
CH004, has also been shown to cause cell death in 
HCC by promoting ferroptosis[256]. High CBS level has 
been found to be associated with drug resistance in 
HepG2 cells, and its inhibition increases their sensitivity 
to doxorubicin and sunitinib; however, in BEL-7404, the 
elevation of CBS levels enhances the sensitivity to the 
drugs[257]. This confirms that the effect of CBS in HCC is 
cell dependent. CBS expression has also been reported 
to be significantly increased and associated with poor 
prognosis in renal cancer and cholangiocarcinoma[258], 
suggesting that the enzyme is involved in cancer 
activities. However, evidence on its inhibition is still 
lacking. In ovarian cancer, CBS gene silencing reduces 
migration, angiogenesis, and lipid contents[241]. The 
inhibition of CBS also activates the JNK pathway 
and suppresses mitofusin, resulting in mitochondrial 
morphogenesis reprogramming and the sensitization of 
cells to erastin[259]. In a recent study, a nanoformulation 
comprising selenium-containing chrysin has been 
shown to induce its anticancer effects in ovarian cancer 
cells by reducing CBS expression, thereby causing 
oxidative stress[260]. In colon cancer, CBS overexpression 
is associated with cancer development and treatment 
with AOAA, and CBS gene silencing can significantly 
reverse pro-cancer activities[261]. AOAA also sensitizes 
colon cancer cells to oxaliplatin by impairing the 
antioxidant system and promoting ROS generation. 
Treatment with AOAA has also been indicated to 
induce the upregulation of E-cadherin and zonula 
occludens-1 as well as the suppression of fibronectin, 
thereby inhibiting the migration and invasion activities 
of colon cancer cells and promoting mesenchymal-
epithelial transition[262]. Other CBS inhibitors that 
induce apoptosis in colon cancer cells include 
2,3,4-trihydroxybenzylhydrazine and sikokianin  C[263]. 
Moreover, treatment with AOAA in multiple myeloma 
reduces cell cycle progression by triggering G0/G1 arrest 
and promotes apoptosis through Bcl-2 inhibition and 
caspase-3 activation[264]. CBS knockdown in glioma cells 
is to have a fatal outcome, as it results in the progression 
and metastasis of cancer. These data suggest that CBS 
plays a role in cancer activities in different types of cells, 
with its effects varying accordingly; its anticancer effect 
is selective only to certain types of cancers or cells.

3.3. 3-mercaptopyruvate sulfurtransferase inhibitor

3-MPST in commonly found in cells. It regulates 
various cellular activities, including bioenergetics, 
angiogenesis, and the mitochondria electron transport 
system[265]. In an animal model of colon cancer, treatment 
with the 3-MPST inhibitor 2-[(4-hydroxy-6-methyl 
pyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-
one (HMPSNE) suppresses H2S production, CT26  cells 
proliferation, migration, and oxidative phosphorylation-
associated cellular bioenergetics[266]. HMPSNE treatment 
also suppresses migration-  and invasion-promoting 
markers in colon cancer cells by suppressing Wnt-β-
catenin pathway[267]. In human breast cancer cells MCF-7, 
treatment with another inhibitor, S-Allyl-L-cysteine, has 
been shown to reduce cell viability by attenuating 3-MPST 
expression and, subsequently, H2S level[268]. On the 
contrary, in neuroblastoma cells, the elevation of 3-MPST 
activities has shown anticancer properties[167]. The above 
evidence suggests an involvement of 3-MPST in cancer 
progression; however, its precise mechanism of action, 
the pathways involved, and its inhibition effect in different 
types of cancers are yet to be identified.

4. Translation of H2S research into 
therapeutic format
The findings from the aforementioned research on H2S 
donors and inhibitors show considerable potential for 
the development of H2S-based chemopreventive cancer 
therapies in the near future. The research community 
expects substantial outcomes from the preclinical trials 
on H2S-based chemopreventive drugs. However, to 
shape the future of H2S research in oncology practice, it 
is highly significant to investigate the biochemistry and 
pharmacology of H2S donors and inhibitors as well as 
characterize their dose-dependent responses to cancer 
cells. A  huge gap remains in understanding how H2S-
producing enzymes respond to the exposure of inhibitors 
and donors in cancer cells and how they reinforce to 
generate signals of apoptosis and proliferation in the 
cancer microenvironment. To reach a large audience 
across multiple disciplines and promote the innovation 
of H2S biomedicine, identifying potential therapeutic H2S 
scavengers and donors are as important as assessing their 
biomedical applications.

5. Conclusion
H2S is widely recognized for its enormous diagnostic 
and therapeutic advantages in various diseases, 
including cancer. Besides its involvement in other 
pathophysiological illnesses, H2S plays a significant role in 
regulating various cellular activities, such as angiogenesis, 
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cellular bioenergetics, proliferation, apoptosis, EMT, 
and autophagy, all of which are involved in cancer. The 
current understanding of H2S research reveals that both 
the upregulation and downregulation of H2S might have 
anticancer effects, depending on the type of cancer. With 
the recent advancements in science and technology, 
researchers have testified that the ability of applied H2S 
donor or inhibitor drugs to induce their corresponding 
effects on H2S production varies, resulting in pro-cancer 
or anticancer properties of varying magnitude ranging 
from none or little to a strong influence depending on the 
drug type and targeted cells. Besides the individual impact, 
combining H2S drugs with other anticancer drugs have 
been reported to induce significant anticancer effects and 
sensitize cells to treatments.

Furthermore, by alternating H2S levels, numerous 
cellular markers that are associated with cell growth and 
progression have been reported to be affected, resulting in 
cancer inhibition or aggravation. Despite the huge potential 
of these H2S-based natural, native, and designed chemicals 
in cancer treatment, little is known about the mechanism 
of action of these drugs. To shape the future of H2S 
research in oncology practice, conclusive investigations 
are required to assess the drug concentration for treatment 
and the specificity of both H2S donors and inhibitors 
before their use as candidate drugs for cancer treatment in 
clinical settings.
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