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Abstract
Prior studies in metal additive manufacturing (AM) of parts have shown that 
various AM methods and post-AM heat treatment result in distinctly different 
microstructure and machining behavior when compared with conventionally 
manufactured parts. There is a crucial knowledge gap in understanding this 
process-structure-property (PSP) linkage and its relationship to material behavior. 
In this study, the machinability of metallic Ti-6Al-4V AM parts was investigated to 
better understand this unique PSP linkage through a novel data science-based 
approach, specifically by developing and validating a new machine learning (ML) 
model for material characterization and material property, that is, machining 
behavior. Heterogeneous material structures of Ti-6Al-4V AM samples fabricated 
through laser powder bed fusion and electron beam powder bed fusion in two 
different build orientations and post-AM heat treatments were quantitatively 
characterized using scanning electron microscopy, electron backscattered 
diffraction, and residual stress measured through X-ray diffraction. The reduced 
dimensional representation of material characterization data through chord 
length distribution (CLD) functions, 2-point correlation functions, and principal 
component analysis was found to be accurate in quantifying the complexities of 
Ti-6Al-4V AM structures. Specific cutting energy was the response variable for the 
Taguchi-based experimentation using force dynamometer. A low-dimensional S-P 
linkage model was established to correlate material structures of metallic AM and 
machining properties through this novel ML model. It was found that the prediction 
accuracy of this new PSP linkage is extremely high (>99%, statistically significant 
at 95% confidence interval). Findings from this study can be seamlessly integrated 
with P-S models to identify AM processing conditions that will lead to desired 
material behaviors, such as machining behavior (this study), fatigue behavior, and 
corrosion resistance.
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1. Introduction
Metal additive manufacturing (AM) technologies provide 
a flexible, efficient, and rapid means to fabricate complex 
and customized products through a layer-by-layer 
approach. Two main categories of metal AM technologies 
predominantly used in industrial applications are powder 
bed fusion (PBF) and directed energy deposition (DED). 
These processes constitute over 90% of production-grade 
metal AM systems installed worldwide. PBF can be divided 
into two categories depending on the energy source and 
processing conditions. Electron beam PBF (EB-PBF) 
requires a vacuum environment, and laser PBF (L-PBF) 
operates under an inert atmosphere. In addition, Frazier 
(2014) highlighted the major differences in the cooling rates 
across metal AM processes ranging from 103 K/s in DED 
to 104 –106 K/s in L-PBF and EB-PBF. Interactions between 
as-AM, post-processing conditions, and final properties 
have always been of interest, since different cooling 
rates lead to varying material structures and mechanical 
properties[1]. Trelewicz et  al. (2016) found that inherent 
differences in metal AM processing conditions directly 
impact the cooling rate and thermal gradient during the 
build, resulting in highly heterogeneous and AM process-
specific dominant textured microstructure (e.g., dominant 
columnar microstructure and microsegregation)[2].

In metal AM production cycles, post-processing steps 
such as heat treatment and machining are often necessary 
to achieve desired material properties, tolerances, and 
surface finish. However, it should be noted that the unique 
heterogeneous microstructure and resulting mechanical 
properties of metal AM also significantly affect their 
machinability. Hence, it is critical to investigate this 
complex interaction between grain morphology (size, 
density, orientation, residual stress, and phase fraction) 
of metal AM parts and resulting material behavior, that 
is, specific cutting power during machining, which is of 
interest in this study. The goal of this study is to establish a 
validated PSP linkage that could be extended to other AM 
material properties, such as corrosion behavior, wear, and 
mechanical strength.

A low-dimensional process-structure-property (PSP) 
linkage that captures the effects of processing conditions on 
critical material structure that ultimately affects material 
behavior has always been of interest to the research and 
manufacturing communities. Bostanabad et  al. (2016) 
provided a stochastic microstructure characterization 
reconstruction method using supervised machine learning 
(ML)[3]. The microstructure reconstruction method 
in their research indicates that the correlation feature 
extraction methods are accurate and efficient to represent 
microstructure characterization statistically. Moreover, 

Kalidindi (2015) summarized the data-based methods 
that related to the accelerated development of advanced 
hierarchical materials[4]. However, this research reveals 
that the correlation functions and physical descriptors 
require high computational cost; hence, a low-dimensional 
method needed to be explored in the PSP linkage 
framework. Popova et  al. (2017) investigated the AM 
process parameters and microstructure PSP correlations 
based on a reduced-ordered ML method[5]. Their 
research developed process-structure (P-S) linkage with 
a low-dimensional representative of AM heterogeneous 
microstructure. However, on the other side, metal AM 
parts’ mechanical and machining behavior had not been 
investigated. Greitemeier et  al. (2015) noticed that the 
chemical composition, microstructure, and mechanical 
properties in AM Ti-6Al-4V are highly dependent on the 
AM processes[6]. Furthermore, the uncertainty in metal 
AM parts’ material properties and mechanical properties 
need to be understood. Hence, Markl and Körner (2016) 
declared that it is critical to establish a novel modeling 
framework based on data science and numerical methods 
that can bridge to a critical knowledge gap between 
process, material microstructure, and material behavior to 
overcome the current limitations due to uncertainties in 
PSP linkages[7]. The present study aims to develop a novel 
PSP ML model for metal Ti-6Al-4V AM alloys that can 
accurately predict material behavior in post-processing, 
that is, machining behavior.

Li et al. (2020) clarified that titanium alloys are widely 
used in multiple mechanical, aerospace, and biomedical 
applications due to their high strength-to-density ratio and 
excellent corrosion resistance[8]. However, titanium alloys 
are often difficult to cast and process through subtractive 
machining (e.g., strain hardening). Liu and Shin (2019) 
showed that metal AM technologies provide an alternative 
near-net-shape fabrication capability that allows for 
titanium product manufacturing to become relatively more 
cost effective for high-performance applications[9]. Hence, 
to better understand the titanium alloys performance in the 
AM field, a PSP linkage is required to reveal the structure 
and machining behavior correlation of AM titanium alloys.

To build the PSP linkages, descriptors are critical 
components to the necessary data science-based ML 
approaches. These descriptors quantitatively represent 
recorded information on material microstructure using 
statistical methods and appear as correlation functions, 
physical descriptors, and spectral density functions for 
a given grain morphology. Corson (1974) described the 
2-point correlation function representing heterogeneous 
material microstructure[10]. However, the limitation of 
2-point correlations in the representation of heterogeneity 
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reduces its direct application for metal AM. To better 
represent the AM microstructure, a combination of 
statistical methods needs to be developed. Lu and 
Torquato (1992) provided lineal-path function and cluster 
correlation function, which are widely used to extract 
microstructure information of materials and generate 
statistical data that can represent the heterogeneity of 
a multiphase structure[11]. Hence, in the present study, 
multiple types of statistic models have been used to capture 
information from AM microstructure.

In the case of P-S linkage, Gan et  al. (2019) reported 
the challenges in establishing a validated relationship 
based on the experimental measurements of multiple 
AM process phenomena across multiple spatial-temporal 
scales[12]. Hence, numerical simulation methods become a 
tool to build connections between microstructure and the 
AM process parameters. Thijs et al. (2010) showed that in 
the PBF process, the AM process (e.g., EB-PBF vs. L-PBF) 
and the corresponding AM processing conditions, such 
as beam power density and scan strategies, significantly 
influence both the overall grain morphology and local 
microstructure[13]. This can be attributed to the effects 
of input energy density, which affects the growth 
direction of the elongated grains as a function of build 
height and the resulting cooling rate that influences the 
phase transformation of the material. For instance, Li 
et  al. (2017) noted that the temperature fields on DED 
processing created by the moving heat power source and 
material absorption conditions can directly affect the 
microstructural evolution due to cyclic thermal processing, 
which results in complex solidification and “in-build” 
thermal cycling of previous layers[14]. Due to the significant 
differences between PBF and DED processes, the present 
study focused on Ti-6Al-4V PBF material and machining 
properties.

For structure-property (S-P) linkages, Paulson et  al. 
(2019) explored the correlation between grain morphology 
and mechanical properties, such as microhardness, 
tensile, fatigue behavior, and elastic localization, based 
on the correlation function[15]. However, considering 
the inherent layer-by-layer characteristic of metal AM 
processing, the resulting heterogeneous microstructure 
will need to be considered to achieve high accuracy in the 
S-P correlation function. Hence, Fernandez-Zelaia et  al. 
(2019) established S-P linkages based on spatial statistical 
metric feature descriptors[16]. However, during the AM 
processes, different fabrication processes (e.g., L-PBF and 
EB-PBF) and parameters would lead to drastic differences 
in different parts, so a large dataset could challenge the 
conventional methods. Yang et  al. (2018) provided S-P 
linkages using ML methods with limited success due 

to challenging high-dimensional data representation 
with limited quantification of grain morphology metrics 
and statistical evidence[17]. However, effort focused on 
homogeneous materials; additional investigation is needed 
for establishing S-P linkages based on the AM materials.

Manogharan et  al. (2015) illustrated that post-
processing steps, such as hot isostatic pressing, machining, 
and/or surface finishing operations, are required to create 
functional metal AM surfaces[18]. Hence, establishing and 
validating novel S-P linkages that are able to capture AM 
metal part machining behavior accurately are imperative 
for metal AM development. Zhang et al. (2019) indicated 
that in machining of wrought and AM Ti-6Al-4V, cutting 
conditions including cooling strategy, cutting tool 
geometry, tool coating, and machining parameters strongly 
affect the machined surface and related mechanical 
properties of metal AM parts[19]. Due to the presence of 
fine microstructure and martensitic phase distribution, 
PBF Ti-6Al-4V samples exhibit a higher hardness when 
compared to the wrought parts. Hence, a higher wear rate 
was observed during the machining of AM Ti-6Al-4V. 
Liu and Shin (2019) found that due to a higher thermal 
gradient and cooling rate when compared with traditional 
parts, PBF Ti-6Al4V usually shows higher ultimate tensile 
stress, yield stress, and lower elongation rate[9], indicating 
that the conventional machining parameters might need 
to be optimized for AM parts, and a valid S-P linkage 
would be critical for AM material research. In addition, 
Edwards and Ramulu (2014) found that inherently large 
temperature gradients in Ti-6Al-4V AM parts result in 
higher residual stress, which increases with an increase 
in AM processing time, that is, number of AM layers[20]. 
Studies have shown that residual stresses are larger along 
the scan direction than perpendicular direction due to 
the larger thermal gradient, which creates an anisotropic 
residual stress distribution, ultimately affecting the 
mechanical and machining behavior of AM parts.

In summary, a reduced-order computational and 
analytical method is required to thoroughly explore the 
mechanical and machining behavior for various metallic 
AM materials. Such a high-throughput computational data 
science-based analysis of material structure and resulting 
material behavior will connect a massive dataset that 
stores microstructural characteristics to the properties of 
materials to gain critical insights into this complex PSP 
linkage. To this end, Matouš et al. (2017) provided several 
ML and deep learning based predictive models on material 
databases for building PSP linkages and estimating the 
material properties where no experimental data may 
be available[21]. In the case of machining research, Leo 
(2001) provided ML tools that could be further developed 
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to predict the relationship between cutting conditions, 
temperature, grain size, grain fraction, and hardness data 
on Ti-6Al-4V for generic microstructures derived from 
conventional manufacturing[22]. Hence, high efficiency and 
validated PSP linkages for metal AM processing, which 
capture the AM part machining behavior and material 
properties, need to be developed.

This study builds on the prior work described. Gong 
et al. (2020) showed statistically significant differences in the 
machining behavior of Ti-6Al-4V across build directions 
in EB-PBF specimens, and as-AM and after heat-treated 
L-PBF specimens (21% lower specific cutting power in 
L-PBF specimens)[23]. In addition, Ren et al. (2019) found 
that visual evaluation of material characterization data 
showed textured differences in microstructure, residual 
stress, and crystal graphic information among different PFB 
parts[24]. Recent study by Goh et al. (2021) has identified 
the need to establish standards for sharing large dataset 
of AM processing conditions to accelerate advancements 
in ML applications to improve AM[25]. A recent review by 
Nasiri and Khosravani (2021) presented opportunities for 
applying ML methods to understand fracture behavior 
of AM parts[26]. In addition, a recent report by Sing et al. 
(2021) established opportunities to integrate ML methods 
in both upstream (i.e., part design and file preparation) 
and downstream (i.e., in-process monitoring)[27].

It is evident that there is a need for a systematic 
framework to quantify the heterogeneity in Ti-6Al-4V 
material structures processed through varied AM and 
post-AM conditions to better understand the PSP linkages. 
In this study, statistical functions are used to represent 
scanning electron microscopy (SEM), electron backscatter 
diffraction (EBSD) microstructure information, and 
residual stress captured from X-ray diffraction (XRD). 
According to Chen and Guestrin (2016), a novel ML 
tool was developed to construct a reusable S-P linkage to 
predict the machining behavior of as-AM and heat-treated 
PBF Ti-6Al-4V[28]. In addition to the novel PSP linkage, 
this study employed a comprehensive dataset to generate 
an aggregate database that is reflective of all PBF processing 
of Ti-6Al-4V alloys, as shown in Figure  1:  (1)  200 SEM 
images per material, that is, L-PBF with and without heat 
treatment – HT, EB-PBF per surface, that is, parallel-XY 
and along-XZ build orientation; (2) 3 XRD per material 
per surface; and (3) 3 EBSD per material per surface. 
Measurements were conducted from three different 
samples from the same processing conditions.

In summary, the overall goal of the study is to provide 
a novel framework for AM Ti-6Al-4V machining by 
developing PSP linkages to link microstructures to the 
corresponding machining behavior, based on the specific 

cutting energy. The success of this approach depends on 
the critical definition of a suitable reduced-order form 
of descriptors for heterogeneous grain morphology 
across a wide range of microstructures for given material 
composition. Figure  1 presents the aims, scope, and 
methodology of this study, which are detailed in subsequent 
sections.

2. Methodology

2.1. Sample preparation

In the case of Ti-6Al-4V EB-PBF specimens, 25 × 25 × 
50  mm Ti-6Al-4V blocks were fabricated in an Arcam 
A2 electron beam melting machine with 50  µm layer 
thickness using standard Ti-6Al-4V 50  µm preheat and 
melt parameters provided by Arcam. In the case of L-PBF 
specimens, Ti-6Al-4V blocks of similar dimensions were 
fabricated in an EOSINT M280 system using a fiber laser 
power of 200 W and spot size of 80 µm, and power density 
reach ~40  kW/mm2 using standard EOS Ti-6Al-4V 
parameters with raster scanning and a hatch distance of 
100 µm. All specimens had built orientations along the 
Z-axis, which is the direction of the smallest dimension. 
Additional L-PBF samples in the same build direction 
were fabricated for heat treatment and for residual stress 
relief. As per AM standards, samples were heated under 
vacuum to a temperature within the range of 899~927 ± 
14°C (1650~1700 ± 25°F), held for 2–4 h and argon cooled 
to below 427°C (800°F), then heated again to 538 ± 14°C 
(1000 ± 25°F) for 4 h in vacuum followed by Argon cooling 
to room temperature. To eliminate the potential effects 
of part location across build plates, specimen locations 
were randomized. Furthermore, to eliminate the effects of 
proximity to build plate, samples for characterization were 
harvested from the center of the part from the topmost 
layer (Figure 3).

Representative AM Ti-6Al-4V specimens were 
sectioned from the build platform using wire EDM. 
Samples representing the surface parallel and vertical to 
build orientation on all EB-PBF, as-AM L-PBF, and heat-
treated L-PBF specimens were mounted in the epoxy 
model for mechanical polishing to achieve 0.5 µ grading 
surface finish. A final ion milling was applied to prepare 
the sample surfaces for EBSD testing using a Thermo 
ScientificTM Apreo SEM with an Oxford Instruments 
EBSD detector. Kroll’s reagent was then applied for 30 s 
to etch all samples, revealing all grain boundaries for 
SEM microstructure observation. Other samples from 
the same batch of fabrication representing all the surfaces 
described above were also used in X-ray residual stress 
measurements.
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2.2. Material structure data extraction

2.2.1. SEM data extraction

To develop a robust PSP model, it is critical to statistically 
represent grain morphology that can accurately represent 
AM material heterogeneity. In this study, a large number 
of microstructures (e.g., 200 SEM images per material 
surface) were captured. The rationale for this data-intensive 
approach is to capture a statistically representative set 
of local material structures for a given material surface. 
Previous research has shown that the representative volume 
element (RVE) represents a range where the material 
properties would not be sensitive to the bulk material 
properties. Przybyla and Mcdowell (2012) indicated that 
smaller statistical volume elements (SVEs) that capture 
material properties could be used to achieve a feasible 
computational cost and time[29]. The volume requirement 
of SVEs is effective in achieving the key features of a 
given grain morphology. To achieve high efficiency and 
low computational cost, SVE sets were collected from all 
material samples in this study.

To statistically represent quantitative descriptors of 
each microstructure, low-order spatial correlations such as 
2-point correlation functions can be developed to capture 
the structural variability. In this study, 2-point correlation 
functions f(m,m’ |r) represent the conditional probability 
density of finding the same phase features m and m’ at 
the head and tail of a vector r randomly placed in the 
microstructure and is formally expressed as:

( ) ( ) ( ) ( )' '1, |  , ,f m m r p m x p m x r dx
Vol

Ω

= +
Ω ∫ � (I)

Figure 1. Schematic summary of the workflow to build-up S-P linkage for the machining behavior in microstructures.

Figure 2. Machining experiment set up.

Figure 3. Machining feed direction.



Materials Science in Additive Manufacturing A ML model for AM PSP of Ti64

Volume 1 Issue 1 (2022)	 6� https://doi.org/10.18063/msam.v1i1.6

Where, the function p(m,x) represents the probability 
density of finding the local state m at the spatial location 
x. In this function, m and x can be treated as either 
continuous variables or discretized descriptors. In this 
study, the Ti-6Al-4V phase information is considered the 
local state space. Therefore, the function f(m,m’|r) denotes 
the conditional probability of finding different phases 
(α/β) in spatial bins across a Ti-6Al-4V microstructure, 
which are separated by the vector set r.

According to Liu and Shin (2019), it is important to 
include multiple descriptors to capture all the elements 
of heterogeneous grain morphology for developing 
a robust microstructure data science PSP linkage[9]. 
Therefore, besides the correlation functions, chord length 
distributions (CLDs) which are direct descriptors of the 
grain morphology are also applied to the workflow. The 
rationale behind this approach is to capture additional 
microstructure features of interest in metal AM parts: Grain 
size, shape distribution, and their anisotropy. In addition, 
Turner et  al. (2016) have shown that the chord length 
directly connects to the material’s plastic properties, which 
could be a valid statistical method for this workflow[30]. 
The computational cost of CLDs is relatively low and is, 
therefore, ideal for this study that aims to analyze a large 
ensemble of microstructures.

In this study, a chord is defined as a line segment 
that begins and ends at the boundaries of a single grain 
contained within the microstructure. CLDs describe the 
probability of locating a chord of a specific length within 
microstructure SVEs. In this study, CLDs were computed 
in X and Y direction as all microstructure images were 
collected in the same X and Y plane orientation from 
surfaces that share the same X and Y coordinates.

The next step of the microstructure data extraction 
focused on reducing the dimensionality of the 
representations on each SVE in the microstructure using 
spatial data statistics and principal component analysis 
(PCA). The PCA is a data-driven linear transformation 
of extracted data to an orthogonal space that captures the 
variance within the dataset with minimum dimension. 
Kalidindi (2015) presented that the rationale behind 
this approach is to reduce the dimensions of the dataset 
dimensions to significantly increase computational 
efficiency and identify the salient features of the 
microstructure to establish the PSP model[4]. Multiple 
studies have shown that PCA is an effective tool to produce 
low-order, high-value representation of microstructures 
that are valuable for building PSP linkages across a range 
of material categories. In addition, Paulson et  al. (2018) 
have shown that only a few basic functions contribute to 
the efficacy of S-P linkage after PCA[31]. In this study, CLDs 

were computed in both orthogonal orientations (x and y) 
then concatenated with 2-point correlation function data 
to build up a large feature vector for each microstructure 
SVE (i.e., each SEM image). In summary, the PCA input 
deduces microstructure information collected from SEM 
characterization.

2.2.2. XRD data extraction

In addition to the influence of microstructures collected 
from the SEM microstructure, Hansen (1958) indicated 
that other characterization features, such as residual stress, 
also have direct effects on mechanical properties and 
machining behavior[32]. AM fabrication inherently leads to 
a rapid cooling rate and therefore large thermal gradients 
that cause phase transformations, and generates significant 
residual stresses. Telrandhe et al. (2017) have shown that 
near-surface residual stresses have a significant impact on 
mechanical behavior, such as fatigue and microhardness[33]. 
During the post-processing of metal AM parts, machining 
is often required to achieve desired geometric dimensioning 
and tolerancing (GD&T), as well as desired surface finish. 
Therefore, the near-surface residual stresses play a key role 
in the post-processing machining behavior of AM surfaces. 
XRD is one of the most widely used non-destructive 
near-surface residual stress measurement methods. XRD 
directly measures the strain due to the distortion of the 
crystalline lattice structure from residual stress.

In this study, the near-surface residual stress was 
considered an independent input to the S-P linkage model. 
Specimens representing each PFB process, heat treatment 
condition, and vertical and horizontal surfaces to build 
direction were used to measure residual stress in the 
axial direction. All measurements were made using the 
sin2 ψ technique in an X-ray diffractometer with a Cu K-α 
source (1.5406 Å). Strain and residual stresses were calculated 
based on the d-spacing and 10 unique  tilts on the {1 0 3} 
crystallographic plane based on the following equation:

� � � � �

� � � �
�� � �

�

� � � �
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11

2 2

12

2

13 22

2

2

2

cos sin sin sin

cos sin sin siin

sin sin cos #

2

23 33

2
2

�

� �� � � �� � � � (II)

Where, the åφψ represents the strain in the specific 
 and ø tilt. The Ti-6Al-4V elastic constant 119 GPa 
was used to calculate the residual stress. The stress-free 
d-spacing is not necessary to calculate the residual stress 
in this method. Luo and Yang (2017) have shown that the 
d-spacing and sin2ψ relationship might not be linear[34]. 
When shear stresses are present, they will be manifested in 
the d-spacing-sin2ψ plot. Hence, strain was calculated for 
different ψ tilts angles in this study using Equation (II) and 
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a linear regression analysis was performed to calculate the 
principal stress of each specimen.

2.2.3. EBSD data extraction

Grain orientation during machining of polycrystalline metals 
influences the machining response, that is, cutting force and 
surface finish quality. Demir and Mercan (2018) have shown 
that the effect of elastic and plastic anisotropy of the material 
on cutting force cannot be neglected[35]. Hence, several 
models have been developed for deformation mechanisms 
and stress in polycrystalline alloys like Ti-6Al-4V to predict 
and simulate slip, twinning, and detwinning in hexagonal 
(HCP) unit cell in the past decades.

The Schmid factor (SF) was selected in this study 
to capture the local slip and twinning activity in the 
microstructure which have direct effects on related 
machining behavior at a macroscale. SF is defined as a ratio 
of shear stress on the system s and system applied stress 
n, and can also be represented as a product of cosine of 
the angles between the applied stress axis and slip plane 
normal ∅, and applied stress axis and slip direction λ.

 cos coss

n
SF σ

∅ λ
σ

= = � (III)

Huang et  al. (2019) indicated that the Schmid-based 
model assumes that the macroscopic stress is used in the 
calculation of the local solved shear stress in a specific 
slip and twinning system, and the evolution of critical 
resolved shear stress modeling depends on the local stress 
and plastic strain, that is, applied slip system and current 
grain orientation[36], which is directly related to machining 
behavior of the material.

In Ti-6Al-4V, the dominant α phase is an HCP crystal 
structure which has the following slip systems: Basal slip 
{0  0 0  1}(1  1 2  0), prismatic slip {1  0 1  0}(1  1 2  0), 
pyramidal slip {1 0 1  1} (1 1 2  0), first-order pyramidal 
slip {1 0 1  1}(1 1 2  3), and second-order pyramidal slip 
{1 1 2  2}(1 1 2  3). Hémery and Villechaise (2018) have 
shown that the dominant slip systems in Ti-6Al-4V are 
basal, prismatic, and first-order pyramidal[37]. These are the 
three slip systems considered in this study.

While the SF is based on the isostress assumption, 
another descriptor, the Taylor factor (M) is based on an 
isostrain assumption, which measures the work done on 
the crystal for a given orientation and deformation, which 
can be represented as:

M dW
dCRSS CRSS

� �� �
� � �

� (IV)

Where, τCRSS is the crystal critical resolved shear stress, 
dW is the rate of work done, and dε is the incremental 
strain.

In a given transformed state of strain in a crystal, Demir 
(2008) pointed out that the Taylor factor shows that the 
minimum work is done against the slip resistances for each 
five of 12 slip system combinations[38]. Since this study 
aims to predict the machining behavior from the material 
structure, general shear stress and strain conditions were 
applied to the SF and Taylor factor calculation. In this 
study, the SF value and Taylor factor value calculated on 
three replicates of EBSD data for every material surface 
and were treated as independent input variables in the S-P 
linkage workflow.

2.3. Machining experiment and specific cutting 
energy

2.3.1. Machine set up

The machining experiment was performed on a Haas 
VF2SS 3 axis vertical CNC machining center. Peripheral 
milling applied on the specimen blocks mounted on 
a custom-built vise. Cutting tools selected for the 
experiments were 6.35  mm (1/4 inch) nominal diameter 
six flute carbide end mills with KC635M TiAlN coating 
(Model HPFT250S6075), which is recommended for 
machining titanium alloys. The tools have flat square 
end geometry, with zero radial rake angle and 45 axial 
rake angle, which made the modeling of tool geometry 
for specific cutting energy calculation easier. Vise and 
workpiece were mounted on a Kistler 9257A dynamometer, 
which connected to a Kistler Type 5010 Charge Amplifier, 
as shown in Figure 2.

The cutting force data signals were collected and 
restored by Data Physics Quattro Dynamic Signal Analyzer 
using a sampling frequency of 2560 Hz. After each tool set 
up, a dial indicator with a resolution of 0.00127 mm was 
used to measure the tool runout to ensure each machining 
path has an acceptable tolerance.

Based on the Kennametal tool manufacturer’s 
recommendation for Ti-6Al-4V alloys milling, three levels 
of machining parameters were selected for the machining 
experiments, as shown in Table 1.

As described above, for EB-PBF, as-AM L-PBF, and 
heat-treated L-PBF specimens, two feed directions, XY 
and XZ, as shown in Figure 3, that are perpendicular and 
parallel to the build orientation respectively, were utilized 
in the experiment. The radial immersion was 50% for the 
experiment.
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2.3.2. Specific cutting energy

A normalized specific cutting energy was used in this 
study for cutting force analysis and machining behavior 
representation. A  mechanistic force model proposed by 
Kline and DeVor (1983) was used to calculate effective 
specific cutting energy from average cutting force data 
collected[39]. The cutting feed direction is shown in Figure 3 
across all material surfaces (i.e., XY and XZ feed in EB-PBF, 
as-AM L-PBF, and HT L-PBF).

Every cutting edge was treated as small disk elements 
with height dz up to the axial depth of cut. The generalized 
expression for angular engagement of the cutter A(i,j,k) 
shown as below:

A i j k j k
Nf

Z H
R

, , ·

·
tan

� � � � � � � �� ��

�
�

�

�
�

�

�
�

1
2

� (V)

Where, the i indicates the number of disk elements, 
j indicates the angular positions of the cutter θ(j), and 
k defines the number of flutes. Nf is the total number of 
flutes. H is the helix angle, R is the nominal radius of the 
end mill. The tangential force element dFt and radial force 
element dFr are:

( ) ( ), ,  · · , ,dFt i j k Kt dz Tc i j k= � (VI)

Fr i j k Kr dFt i j k, , · , ,� � � � � � (VII)

Where, Tc is the chip thickness for this current 
cutting condition. The Kt and Kr are the specific cutting 
coefficients, which are used to calculate the specific cutting 
energy. Considering the cutting force collected from X 
and Y direction, the relative cutting force element can be 
expressed as:

dFx i k dFr i j k sin A i j k
dFt i j k A i j k

, , ( , , )· ( , , )

( , , )·cos ( , ,
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The total force applied to the material is the summary 
of the dFx and dFy element force from all disks within the 
axial depth of cut.

The final expression of cutting force and related specific 
cutting energy can be calculated through the following 
equations:
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Where, (i,j,k) is an indicator showing whether the 
cutting edge element is engaged with the workpiece, and 
the Fx  and Fy  are the average cutting forces over one 

cutter rotation in X and Y directions. The specific cutting 
energy value Kt can be calculated from Equations (VIII) 
and (IX) based on the instant cutting force Fx and Fy 
collected from the dynamometer (using MATLAB in this 
present study).

The specific cutting energy is also related to the 
machining parameters involved from each run. Therefore, 
machining parameters feed, cutting speed, and depth 
of cut are three independent input variables along with 
microstructure characterization input data (Section  2.2).
This result in the specific cutting energy computed as an 
output in the S-P linkage workflow.

3. Results

3.1. Material microstructure representation

In this study, 200 sets of SVEs were used to represent each 
of the AM Ti-6Al-4V microstructures. Each SVE must 
capture enough information to avoid area sensitivity. 
According to recent research in titanium, Priddy et  al. 
(2017) pointed out that the influence coefficient decayed to 
around zero within a ~210 µm region[40]. Therefore, SVEs 
with similar dimensions of 210  µm side lengths square 

Table 1. Machining parameters.

Levels 1 2 3

Depth of cut (mm) 0.635 1.270 1.905

Feed (mm per tooth) 0.0127 0.0254 0.0381

Speed (m per min) 24.384 36.576 48.768

Radial immersion 50%



Materials Science in Additive Manufacturing A ML model for AM PSP of Ti64

Volume 1 Issue 1 (2022)	 9� https://doi.org/10.18063/msam.v1i1.6

were employed in data collection. For every AM surface 
(L-PBF XY HT, L-PBF XZ HT, L-PBF XY NHT, L-PBF XZ 
NHT, EB-PBF XY, and EB-PBF XZ), 200 microstructure 
images for a total of 1200 microstructure images were 
collected through SEM characterization.

MATLAB batch processing programs were used to 
compute 2-point correlation and CLDs for all SEM images. 
Figure  4a shows an example of the EB-PBF Ti-6Al-4V 
microstructure collected. Small needle-shaped columnar 
α grains that grow along the β boundaries to form a 

typical alternate α+β AM Ti-6Al-4V microstructure can 
be observed. As observed in Figure  4b, the normalized 
2-point correlation reflects the small grain size and particle 
to particle distance, that is, grain density. Figure 4c shows 
that the CLD functions across X and Y directions show 
a longer grain shape distribution in X-direction than 
Y-direction, which was expected in this EB-PBF XZ plane.

Since the total dimensions of the correlation function 
and CLDs for one SVE microstructure vector were over 
3000, zero and near-zero tail ends of the distribution that 

Figure  4. Representative Ti-6Al-4V microstructure SVE: (A) SEM secondary electron microstructure observation, (B) 2-point correlation function, 
(C) CLDs in both X and Y directions.

A

B C
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Figure 5. Accumulated variance captured by different PCs retained in the reduced-order microstructure representation.

Table 2. Crystal strain and residual stress.

Material ε22 ε23 ε33 σ22 (MPa) σ23 (MPa) σ33 (MPa)

L‑PBF XY HT 0.002297 −0.00062 −0.00246 273.343 −74.137 −292.612

L‑PBF XZ HT −0.00096 0.000059 −0.00189 −114.478 7.021 −224.865

L‑PBF XY NHT −0.00134 −0.00018 −0.00047 −159.341 −20.825 −55.981

L‑PBF XZ NHT −0.00179 0.000861 −0.00099 −213.367 102.459 −118.336

EB‑PBF XY −0.00411 0.000716 0.000364 −488.495 85.204 43.275

EB‑PBF XZ 0.000951 −0.00105 −0.00083 113.169 −124.950 −99.309

Figure 6. An example of L-PBF Ti-6Al-4V XY plane. (A) Ti-6Al-4V EBSD observation. (B) Schmid factor plot calculated from EBSD crystal orientation. 
(C) Taylor factor plot calculated from EBSD crystal orientation.

A B C

would not affect the accuracy of the statistical functions 
were not included in the SP linkage model.

Subsequently, PCA was applied to reduce the 
dimension of the microstructure descriptor matrix. For 

each microstructure SVE vector, all variables denoted by 
the statistical functions can be divided into a combination 
of orthogonal basis vectors, which is named as principal 
components (PCs) and weight (PC variance score). 
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Figure 5 shows the individual variance for each PC. It is 
evident that cumulative variance increases with increasing 
numbers of PCs. The PCA cumulative variance approaches 
to >99% as the number of PCs increases to 238.

Therefore, the total dimension of microstructural 
representation was reduced to 238, which reduces the 
dimension of the descriptor matrix by more than 92% when 
compared with the original input matrix. This was critical to 
develop an SP linkage model that was both computationally 
feasible and accurate to predict material response.

In this study, XRD residual stresses were measured along 
the direction of machining feed. The X-ray penetration 
depth varied between 25~50 µm, which depends on the  
tilt angles. Using XRD crystal strain measurements and 
Equation (II), the average surface residual stresses for all 
six AM material surfaces are presented in Table 2.

The positive value in residual stress indicates tensile stress, 
while the negative value indicates compression stress. The 
residual stress on L-PBF surfaces after heat treatment shows 
a decrease in shear stress. However, heat treatment does not 
heavily influence the near-surface crystal principal stress in 
Y and Z directions in L-PBF specimens. EB-PBF samples 
as-AM top surface shows the largest compressive stress in 
the Y-axis direction and the smallest principal stress in the 
Z-direction, which indicates tensile stress and large shear 
stress along with the build orientation in EB-PBF sample.

Based on the EBSD measurements, the SF and Taylor 
factor (M values) were calculated from crystal orientation 
distribution using MATLAB program. Average SF and M 
values for each SVE were added to the PCA descriptor 
matrix. Zhang et al. (2019) indicated that the SF analysis 
shows SVE with high variants of active twinning and 
detwinning should have high values of SF[19]. Considering 
the major slip systems in α-Ti-6Al-4V, basal, prismatic, 
and the first-order pyramidal slip systems were applied 
in the Schmid model, while the critical resolved shear 
stress (CRSS) ratio for these selected three slip systems is 
1:0.7:3. Demir (2009) showed that the deformation strain 
(DS) in Taylor factor calculation for a peripheral milling 
process can be expressed as a sum of pure shear and 
angular shear, as shown in Equation (XII)[41]. Since the 
strain varies based on the machining parameters, three 
different strain rates were selected in the Taylor model 
calculation.

DS �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

0 0
2

0 0 0

2
0 0

0 0
2

0 0 0

2
0 0

�

�

�

�
� (XII)

Figure  6 shows an example of EBSD observation on 
the heat-treated L-PBF XY plane sample and Table S1 in 
the Supplementary File shows the average SF at different 
slip systems and Taylor factor of different strain rates for 
different AM material surfaces.

3.2. ML model and cross-validation results

The goal of this study to establish the S-P linkage by training 
a regression ML model relies on machining parameters, 
microstructure functions, residual stress, and SF input to 
predict the specific cutting energy.

To construct a robust ML model, the first step is 
data preparation. In this study, the dataset contains 
14,400  sample points with 72 different machining 
parameter combinations and 200 sets of microstructure 
data for every AM material surface. After PCA of the SEM 
microstructure, this was reduced to one response variable 
(specific cutting power) and 262 features: 238 features 
for PCA processed features to represent microstructure 
function, three features for the residual stress, nine features 
for SFs input, nine features for the Taylor factors input, and 
three features for the machining parameter combinations 
(feed, speed, and depth of cut). For each machining 
parameter combination, three replicates were conducted, 
and the average specific cutting energy was treated as the 
response variables.

The next step is to train a regression model (random 
80% dataset) for testing (20% dataset). This study 
employed XGBoost (eXtreme Gradient Boosting Tree-
based approach) and linear regression models for training. 
Chen and Guestrin (2016) presented the XGBoost 
model, which has been widely used due to its accuracy 
and interpretability[28]. XGBoost is a regularized gradient 
boosting machine which controls for overfitting by 
employing a more regularized objective function that 
incorporates both a convex loss function and a penalty 
parameter for regression tree function. The classical linear 
regression model is used as the baseline model. Both models 
were implemented using Sklearn packages in Python. A grid 
search approach for tuning the hyperparameters, including 
the maximum depth of each subtree and the number of 
subtrees, was applied. A  grid search evaluates different 
combinations of hyperparameters by cross-validation and 
selecting the best hyperparameter set to train the estimator 
of a learning model. During validation, the test set (20%) 
was applied to the best XGBoost estimator and the linear 
model to validate their accuracies with the root mean 
square error (RMSE) being the evaluation metric for the 
accuracy of the ML model.

To better understand the influence of machining 
parameters, microstructure functions, residual stress, 
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and EBSD feature inputs on model accuracy, five 
different combinations of features were designed for 
training and testing. The first combination uses only 
machining parameters (MP) as the ML inputs; the second 
combination considers machining parameters and EBSD 
features (MP+EBSD); the third combination considers 
machining parameters and residual stress (MP+XRD); 
the fourth design considers machining parameters 
and SEM microstructure functions (MP+SEM); and 
the last design integrates all the input features (All = 

MP+SEM+EBSD+XRD). The rationale for this approach 
is to understand the individual and interaction effects 
of machining conditions, grain size, grain density, grain 
orientation, and residual stress on machining behavior.

As common in ML models, training and testing of all five 
combinations of design features were repeated multiple times 
(ML runs = 10), where randomly selected sets of training data 
(80%) and test data (20%) were applied. ML results to predict 
specific cutting power during machining of Ti-6Al-4V AM 
surfaces using PBF are presented in Figure 7, where the Y-axis 

Figure 7. RMSE values in both XGBoost and linear regression cross validation for different feature combinations.

Figure 8. F-score in different input training models: (A) Machining parameters, (B) machining parameters with EBSD data, (C) machining parameters 
with residual stress data, (D) machining parameters with SEM microstructure PCs, and (E) all features.

A B

D E

C
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represents the average RMSE, and corresponding standard 
deviations are presented for each feature combination. It 
should be noted that when all features are used, the standard 
deviation for the XGBoost ML model is minimal (0.5 % 
RMSE with ± 0.025% standard deviation).

4. Discussion
As shown in Figure  7, predictors trained with only 
machining parameters achieve about 90% accuracy in 
both XGBoost and linear models. However, when the SFs 
and Taylor factors features are independently included in 
the ML models, the XGBoost model’s accuracy increases 
to 94.6%, with larger variance (±5%), and the linear 
regression model was not improved with SFs and Taylor 
factor. It is evident that the incorporation of residual stress 
and crystal orientation increased the accuracy to predict 
machining behavior in a ML model. The larger variance 
shows that additional descriptors that represent other 
features of a microstructure should be considered. One 
possible reason is that the linear model is less capable 
of synthesizing high-dimensional data. However, it is 
evident that linear regression models are not sufficient 
to accurately predict the machining behavior of complex 
microstructures produced through metal AM. It was also 
observed that the accuracy of the ML model increased 
to 97% when machining parameters and SEM spatial 
functions were considered to predict machining behavior. 
This can be attributed to the relatively smaller grain size 
and higher grain density in PBF AM systems, which are 
captured in the SEM descriptors (2-point correlation 
function and CLDs). Finally, when all the design features 
are included, the XGBoost ML model achieved an accuracy 
of 99.5% ± 0.025.

It can be deduced that the XGBoost ML model 
developed in this study is consistently more accurate when 
compared to the linear regression model, which is widely 
used in this field. The accuracy of the linear regression 
model decreases in a high-dimensional dataset, such 
as MP+SEM. Zhang et  al. (2018) indicated that in the 
ML model, the overfitting problem might happen when 
the dataset has a large dimension of input factors with a 
relatively small size of responses[42]. Due to the smaller 
dataset volume (72 data samples) in both combinations of 
machining parameters with residual stresses and EBSD, the 
variance of testing accuracy is large for both ML models, 
which could be attributed to overfitting in XGBoost model. 
It is inferred that at higher dataset volume, the XGBoost 
model becomes more accurate in prediction performance.

To isolate the individual effect, impact feature 
importance analysis was performed on all the features 
considered in this XGBoost ML model, namely, residual 

stresses from XRD measurements, SFs and Taylor factors 
captured from the EBSD map, and features from PCA of 
the SEM images. In the XGBoost ML model, the weight 
(importance) of a feature will increase if it participates in 
the creation of each tree during the forest building stage of 
the ML model. Dhaliwal and Nahid (2018) reported that 
when the tree is growing, for every gain of splits that use the 
feature, the importance of this feature increased[43]. Hence, 
the feature score (F-score) is introduced to evaluate the 
importance of a feature by calculating the number of times 
a feature appears in a tree and is presented in Figure 8.

As expected, machining parameters are the most 
important role in the S-P linkage construction as expected. 
Based on the F-scores of the last model, where all features 
are included, the surface residual stresses (RSs) have the 
highest impact among all material structure features, 
which can be observed in Figure  8e, followed by SF in 
the prismatic slip systems and small strain Taylor factor 
calculated from EBSD measurements. PCs calculated from 
the SEM microstructure data also show a positive effect 
on predicting the specific cutting energy. If only SEM 
information with the machining parameters was used to 
train the XGBoost model, PCs with higher variance (initial 
few PCs) could positively influence the prediction accuracy 
of specific cutting energy, as shown in Figure 8d. However, 
incorporating additional PCs of SEM microstructure 
result in lower prediction accuracy. This could be due 
to the collinearity of SEM data with XRD and EBSD 
measurements. In addition, incorporating additional 
PC elements of microscaled structural information may 
not represent useful data for a specific prediction goal of 
machining behavior. SFs and Taylor factors calculated 
from all three slip systems also possess some importance 
in predicting the specific cutting energy. Since the Taylor 
factors measurement highly depends on EBSD data quality, 
zero solution in EBSD data could reduce the accuracy of 
the Taylor factor.

In summary, incorporating microstructure, SFs, and 
Taylor factors extracted from EBSD data, and residual 
stress calculated from XRD measurements were the most 
effective in accurately predicting machining behavior 
when compared with a baseline model where only 
machining parameters were incorporated in both linear 
regression and XGBoost model. It is also evident that 
a high-dimensional and large-volume dataset greatly 
improves the accuracy of prediction, but advanced ML 
approaches are necessary to handle such complex datasets. 
Due to the relatively small data volume of residual stress, 
SFs, and Taylor factors, models for MP+EBSD, and 
MP+XRD show a lower accuracy when compared with 
model MP+SEM.
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However, a model with all features (All) is highly 
accurate to predict the AM Ti-6Al-4V machining behavior 
among different AM surfaces and build orientations, due 
to the complex thermal gradients in PBF processes that 
lead to different residual stress conditions and crystal 
structure. This can be attributed to the incorporation of 
grain orientations information and residual stress with 
SEM and machining parameters. In addition, the future 
study will include further extending this model to similar 
alloys for AM (e.g., Ti6242 - Ti-6Al-2Sn-4Zr-2Mo-0.08Si) 
and for other AM processes for Ti-6Al-4V (e.g., wire or 
powder based, laser or electron beam, or plasma-based 
DED processes).

This study developed a new workflow to establish and 
validate high accuracy ML models for S-P linkages based 
on reduced-order grain morphology information for 
machining behavior on the PBF Ti-6Al-4V alloys. The 
data extraction methods were efficient and validated. In 
addition, Paulson et  al. (2019) have established the P-S 
linkages to connect metal AM microstructure with several 
AM processing conditions based on laser power density 
and scanning strategies[15]. Based on the findings from this 
study, a full metal AM PSP linkage can be built to link AM 
processing with final post-processing machining behavior 
based on the material characterization and reduced-
ordered data science approach.

5. Conclusion
A novel Ti-6Al-4V AM workflow is presented to build an 
S-P linkage in microstructure evolution and machining 
behavior relationship through the utilization of advanced 
data science techniques. This workflow discovered the 
influence of multiple features of a grain morphology 
created by the PBF process on specific cutting power 
during post-AM machining. Five steps were introduced 
in this approach: (1) Microstructure data processing, (2) 
dimensionality reduction, (3) machining data extraction, 
(4) extraction and evaluation of S-P linkages, and (5) 
feature importance analyses. Due to the large dataset used 
in this workflow, PCA and ML tools were developed to 
overcome the difficulties in conventional material science 
analysis. A  comprehensive set of fully functional ML 
programs to batch process large SEM, EBSD, XRD, and 
cutting force data codes were created to batch process the 
large structure and properties dataset.

This novel workflow was highly accurate (>99%) in 
predicting the machining behavior of PFB Ti-6Al-4V 
microstructures. Grain morphology features included 
in the workflow were microstructure spatial correlation 
functions, CLDs, residual stress, SFs, and Taylor factors, 
which significantly improved the accuracy of machining 
behavior prediction. This study provides a feasible routine 

for metal AM parts machining behavior prediction for 
post-processing in the future.

Although the S-P linkage showed excellent results in this 
study, this study was limited to only PBF AM parts. Additional 
studies using wrought and other AM processes, such as wire 
and powder fed DED technologies, are still needed.

Nomenclature 

m Local state

r Vector length (μm)

Ψ Specimen rotation angle in XRD (°)

τ CRSS Critical resolved shear stress (MPa)

dε Incremental strain

θ Angular position of the cutter (°)

dz Axial disk element thickness (mm)

A Angular engagement of disk element (mm2)

Nf Number of flutes

H Helix angle (°)

R Nominal radius of the end mill (mm)

Z Height above the free end of the cutter (mm)

Tc Chip thickness of the disk element (mm)

ft Feed (mm/tooth)

dFt Tangential force element (N)

dFr Radial force element (N)

Kt Specific cutting energy (N/mm2)

Kr Ratio of radial to tangential cutting force

dFx Force element parallel to feed direction (N)

dFy Force element perpendicular to feed direction (N)

ε Cutting tool runout offset (mm)

Fx  
Average cutting force parallel to feed direction (N)

Fy  
Average cutting force normal to feed direction (N)
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