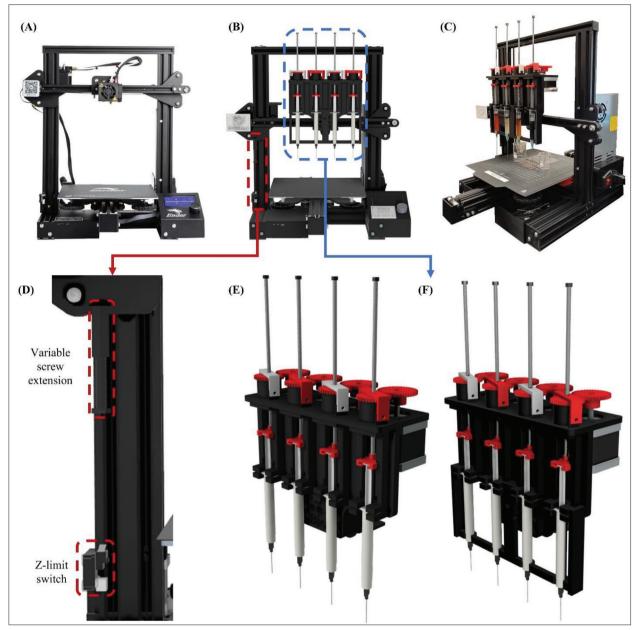


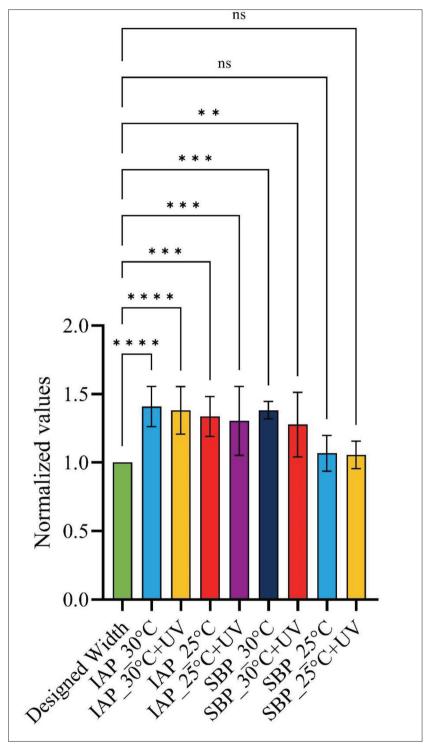
RESEARCH ARTICLE

Development of a low-cost quad-extrusion 3D bioprinting system for multi-material tissue constructs

Supplementary File


Table S1. An overview of both commercial bioprinters currently available on the market and relevant research endeavors

Product	Manufacturer	Print volume	Extruders	Cost (US\$)
BioV1	REGEMAT3D	$150 \times 160 \times 110 \text{ mm}$	3	~\$25k
Allevi 3	Allevi by 3D Systems	$130 \times 90 \times 60 \text{ mm}$	3	~\$40k
BIO X	CELLINK	$130 \times 90 \times 70 \text{ mm}$	3	~\$40k
LulzBot BIO	LulzBot	160 × 110 × 90 mm	1	~\$10k
ModiPrint	Shen et al. ^{[26]a}	$600 \times 600 \times 700 \text{ mm}^{b}$	4	~\$6k
Ultra-low-cost 3D Bioprinter	Kahl et al. ^{[27]a}	$100 \times 100 \times 240 \text{ mm}$	1	~\$160
Low-cost bioprinter	Krige et al. ^{[30]a}	$230 \times 200 \times 100 \text{ mm}$	3	~\$300°
Nydus One Syringe Extruder (NOSE)	Bessler et al. ^{[32]a}	200 × 200 × 200 mm	1	~\$95°


^a Refer to the original references in the main article (https://doi.org/10.36922/ijb.0159).

^b Total machine volume rather than printing volume as it is not clear from the research group.

^cCost of modified extruder only; this cost is added to the cost of the Prusa i3 3D printer.

Figure S1. QEB components and development. (A) Original Creality Ender 3 Pro desktop 3D printer. (B) Final QEB 3D Cad model showing the modifications done on the Ender 3 Pro with the final QEH mounted on the printer. (B) Real photo of final QEB with 4 syringes mounted, containing different bioinks. (D) Variable screw extension for Z-limit switch for different needle length accommodation. (E) First QEH developed before the addition of the nozzle frame. (F) Final QEH with the added nozzle frame to maintain nozzle alignment.

Figure S2. Normalized strand width measurements compared to the designed width. Grids printed with in-air printing (IAP) and support bath printing (SBP), at 25°C and 30°C, with and without UV crosslinking are measured and normalized. Comparisons between each group and the designed width were statistically analyzed using one-way ANOVA (ns, not significant; * p < 0.05; *** p < 0.005; **** p < 0.0005; **** p < 0.0005).

Figure S3. Cell viability of HTR-8 cells, printed in a grid structure, over a 3-day time course. (* *p* < 0.05; ** *p* < 0.005).