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S1. WGS data and RNA-seq quality control

In this study, we performed additional filtering on the WGS data and RNA-seq according to standard quality control (QC) 
procedures, described as follows: removing duplicated subjects and applying additional QC recommendations proposed by 
the AMP-PD database to filter out sequencing data pertaining to these subjects (https://amp-pd.org/whole-genome-data; 
https://amp-pd.org/transcriptomics-data).

S2. Transposable elements discovery

The AMP-PD database aligned WGS sequencing reads with the human reference genome (GRCH38DH). We utilized the 
aligned cram files with the Mobile Element Locator Tool (MELT, Version 2.2.2)[1] to detect non-reference transposable 
elements (TEs) across the human genome. Each module from MELT is described as follows: MELT-IndivAnalysis module 
identified all non-reference TE insertions in each subject; MELT-GroupAnalysis module merged all non-reference TE 
insertion events in each subject to determine accurate breakpoint positions, TE insertion lengths, and TE subfamily 
information, among others. MELT-Genotype module performed TE genotype on each subject’s merged non-reference TE 
insertions, and the resulting genotype data were converted into VCF files using the MELT-MakeVCF module.

S3. Post-discovery quality control of TEs

The MELT-generated raw TE genotyping data underwent QC to retain highly reliable TE insertion results. Specific QC 
was accomplished using Vcftools (version 0.1.16)[2], including the following steps: we identified TEs in autosomal regions 
only, excluding those located on the X and Y chromosomes, as well as genome assembly regions such as chr_random, 
chrUn_regions, and chr_alternate contigs (ALT). To ensure high quality of TE identification, non-TE sites were filtered out 
along with TE that contain low complexity regions within 25 bp upstream or downstream. Moreover, TE exhibiting an LP/
RP ratio exceeding two standard deviations and displaying different types of annotations within the same region was also 
excluded from the study. Finally, the remaining high-quality TEs were consistently named using a chromosome_insertion_
position_TE format based on their insertion position and type.

S4. Pre-genome-wide association studies quality control of TEs

Pre-genome-wide association studies (GWAS) QC was performed on all subjects and TE loci. We used PLINK (version 1.90b6.22)
[3] and Vcftools (version 0.1.16)[2] to perform subject and single nucleotide polymorphisms (SNPs) QC. QC steps are shown 
in Figure S1. The steps were as follows: subjects with overall missingness >0.05 were excluded from the study; TEs with 
overall missingness >0.05 and Hardy-Weinberg equilibrium (HWE P < 1 × 10-6) were excluded from the study; subjects with 
heterozygosity rate >4 standard deviation from the mean were also excluded from the study. Subsequently, subjects exhibiting 
mismatched genders, a heterozygosity rate >4 standard deviation from the mean, and relationships among subjects (PI_HAT > 
0.1875) were excluded from the study. Gender verification, heterozygosity assessment, and relationship check were conducted 
based on SNP data from matched subjects. Principal component analysis was used to exclude the geographical outliers. At last, 
we retained the TE with an insertion frequency >0.01. In total, 1,910 subjects and 2,867 TEs remained for further analysis.

S5. Pre-TE-linear mixed model quality control of TEs

The QC process before TE-LMM was as follows: selecting subjects and TE loci that have passed quality control for TE-GWAS 
and patients only. The BioFIND cohort was excluded in this analysis due to the lack of follow-up visit data. Participants with 
only one follow-up time point were also excluded based on different clinical data. Finally, TE with insertion frequency <0.05 
was excluded in the TE-LMM analysis based on various clinical data.
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Table S1. Quality control for TE-LMM analysis

Clinical phenotype MOCA HOEHN and YAHR MDS-UPDRS I MDS-UPDRS II MDS-UPDRS III MDS-UPDRS IV

Number of subjects 658 683 671 691 691 691

Number of TE sites 2,111 2,088 2,103 2,099 2,099 2,099

Legends: Hoehn and Yahr stage: The Hoehn and Yahr stage is a common scale to describe the progression of motor symptoms in Parkinson’s disease. 
On this scale, Stages 1 and 2 represent early-stage, 2 and 3 mid-stage, and 4 and 5 advanced-stage PD. MDS-UPDRS: MDS-Sponsored Revision of 
the UPDRS is a comprehensive scale for assessing Parkinson’s disease motor and non-motor symptoms. MDS-UPDRS includes four parts: Part I: 
Non-motor experiences of daily living; Part II: Motor experiences of daily living; Part III: Motor examination; Part IV: Motor complications. MOCA: 
Montreal Cognitive Assessment, an assessment scale for rapid screening for mild cognitive impairment.

Figure S1. Pre-GWAS quality control of sample and TEs. The gray box indicates that the step is based on the TE polymorphism, while the blue box means 
that the step is based on the SNP polymorphism of the matched sample.
Abbreviations: SD: Standard deviation; TE: Transposable element.
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Figure S2. TE-GWAS QQ plot. The quantile–quantile plot shows the 
observed distribution of P-values of outliers for TE-GWAS and its 
deviation from the expected uniform distribution. The X-axis shows the 
expected P-value after the -log10 transformation. The Y-axis shows the 
observed P-value after the -log10 transformation.

Figure S3. Locuszoom map of the ±500 kb range of chr1_246429040_
ALU. The x-axis shows the physical coordinates (GRCh38DH) of 
each mutation site. The y-axis shows the original P-value after  -the 
log10 transformation of each TE association. The red diamond shows 
chr1_246429040_ALU passing the significant threshold (dashed red 
line). Different colors correspond to linkage disequilibrium (LD) 
values between loci. The blue line at the bottom represents the gene 
structure of this region. Blue arrows indicate the direction of gene 
transcription.
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Figure S4. Impact of TEs on gene expression. QQ plot displays the observed distribution of P-values for interaction-TE-eQTL(A), non-interaction-TE-eQTL 
(D) cis loci, and their deviation from the expected uniform distribution, respectively. Distribution of effect values (β) for different types of TE in interaction-
TE-eQTL (B) and non-interaction-TE-eQTL (E). The lines within the box represent the median value. The upper and lower ends of the box represent the 
interquartile range. Proportions of eGene types in interaction-TE-eQTL(C) and non-interaction-TE-eQTL(F).
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Figure S5. Gene Ontology (GO) enrichment analysis for eGenes in TE-eQTL. The x-axis shows the number of genes enriched to the pathway or function. 
The y-axis shows the pathways or functions in which significant genes are involved. (A) GO annotation results of 26 eGenes (27 TE–gene pairs) regulated 
by cis TE sites in interaction TE-eQTL model. (B) GO annotation results of 624 eGenes (800 TE–gene pairs) regulated by cis TE sites in non-interaction 
TE-eQTL model. BP, MF, and CC represent Biological Process, Molecular Function, and Cellular Component groups of GO, respectively.
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