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Abstract
Whether it is mandatory to vaccinate young children against SARS-CoV-2 and 
respiratory syncytial virus (RSV) is still an ongoing topic of debate. Indeed, vaccine 
acceptance for young children is either too low (in the case of COVID-19) or, in some 
cases, unattainable (with the demand far exceeding the capacity of production in 
the case of RSV vaccines in some countries). In addition, while vaccines do confer 
immunity, they can be complicated by inflammatory reactions to the vaccine itself. 
This inflammatory response is controlled by the nervous system, specifically the 
vagus nerve. Vagal tone optimization in and of itself confers some level of protection 
against viral infections such as SARS-CoV-2 or RSV, but the degree of protection 
has not been adequately evaluated. Even though additional studies are needed to 
validate a strategy of vagal optimization as an alternative to or co-treatment with 
vaccines, studies of noninvasive vagus nerve stimulation should be supported by 
public health agencies as an adjunctive tool providing young children with safe, ready-
to-use immunization and protection from vaccine reactions. This recommendation is 
based on scientific, epidemiological, ethical, and economic considerations.
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1. Introduction
The cholinergic anti-inflammatory pathway is a well-known neuro-immunomodulatory 
pathway, in which acetylcholine (ACh), released by the interaction of vagal nerve with 
specific nicotinic receptors (α7nAChR), prevents the synthesis and release of pro-
inflammatory cytokines.1 Afferent vagal signals, mediated by pathogen-associated 
molecular patterns and damage-associated molecular patterns including cytokines, are 
conveyed to the nucleus tractus solitarius in the brainstem. This, automatically activates 
efferent motor cholinergic neurons from the dorsal motor nucleus of the vagus (DMV) 
to prevent hyperinflammation, creating a negative feedback loop.2 Thus, targeting this 
cholinergic anti-inflammatory pathway has been well described as a strategy to treat 
sepsis, as well as a way to mitigate cytokine reactions in disparate diseases, ranging from 
COVID-19 to rheumatologic diseases.

Electrical stimulation of the vagus nerve has shown efficiency to decrease the 
inflammatory response in both preclinical studies and clinical trials.3 Different 
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modalities of noninvasive stimulation are possible, 
including transcutaneous (noninvasive) stimulation of the 
cervical or the auricular vagus nerve, surgical implantation, 
and natural methods such as Safe and Sound Protocol 
(SSP).4,5 Interestingly, transcutaneous noninvasive vagus 
nerve stimulation (VNS) is well tolerated in infants and 
has been assessed successfully in different indications, 
including neonatal opioid withdrawal syndrome6 and 
neurorehabilitation.7,8 Introducing noninvasive VNS in 
infants and young children as an innovative prophylaxis 
against both SARS-CoV-2 and respiratory syncytial virus 
(RSV) responsible for recurrent outbreaks, as well as to 
inhibit hyperinflammatory reactions that can occur during 
vaccinations, could potentially mitigate disease severity 
and inflammatory reactions in this vulnerable population.

2. Heart rate variability (HRV) for predicting 
survival and identifying vulnerable 
pediatric populations
HRV, an index of vagus nerve activity, reflects autonomic 
nervous system (ANS) dynamics.9 Low HRV is related to 
enhanced sympathetic and/or attenuated parasympathetic 
cardiac modulation, notably during stress. Thus, low 
HRV has been correlated to inflammation (resulting, 
among others, from the host immune response). A robust 
inverse relation between the high-frequency power of the 
HRV (HF-HRV), interleukin-6, C-reactive protein, and 
fibrinogen, with or without covariate adjustment, was 
confirmed in a large study involving 836 adults.10 Low 
HRV is used to prognosticate disease severity, and an early 
marker of disease in many populations, including neonates 
or COVID-19 patients.11,12

Moreover, a direct correlation between HF-HRV and 
vagus neuronal electrical activity has been established 
in anesthetized rats experiencing an acute baroreflex 
response.13 Thus, VNS could potentially modulate HRV. As 
expected, noninvasive VNS proved to be fully able to increase 
HRV in healthy volunteers14-16 as well as in patients.17-19 
Since vagal activity upregulates type I interferon response 
genes concurrently with downregulation of inflammation 
in human immune cells,20 by increasing HRV, noninvasive 
VNS likely protects against viral infections. Infants and 
young children under 2  years old are vulnerable against 
several recurrent pathogens, like the “old” RSV or the more 
recent SARS-CoV-2 variants.

Indeed, RSV is a major cause of bronchiolitis-linked 
morbidity. Risk factors for RSV encompass younger age, 
prematurity, co-infection, and comorbidity.21 Without 
considering premature infants, RSV is annually responsible 
for the hospitalization of one in every 56 healthy term-
born infants in high-income settings.22 RSV infection 

in infants <2  months of age has been associated with 
profound central autonomic dysfunction with alteration of 
the entire frequency spectrum of HRV concomitant with 
apparent life-threatening events and/or prolonged apnea.23 
Moreover, preterm birth by itself confers an even lower 
vagal tone, possibly contributing to vulnerability in this 
at-risk population.24 SARS-CoV-2 has also been shown to 
cause bronchiolitis requiring hospitalization.25

Exposure to multiple viruses, such as SARS-CoV-2 
and RSV, would worsen inflammation, lower HRV, and 
may result in increased morbidity and mortality. Severe 
COVID-19 illness among children with comorbidities is 
noted in roughly 30% of cases with underlying conditions 
such as type  1 diabetes, obesity, cardiac or circulatory 
congenital abnormalities, and prematurity (for children 
aged <2 years).26 All these risk factors are also correlated 
with a lower vagal tone and HRV.27-34 It has been 
hypothesized that the increased morbidity observed in 
these at-risk populations results from a disruption of the 
cholinergic anti-inflammatory pathway by SARS-CoV-2, 
leading to cytokine storm.2,35-37

3. A putative “all-in-one” solution against 
SARS-CoV-2 recurrent infections and/or 
co-infections
Unlike the RNA vaccines, noninvasive VNS does not 
target the virus but the host’s defense systems,38 offering 
a broad protection against reactions to several pathogens. 
Noninvasive VNS appears particularly relevant not only 
for virulent new variants,39 but also in response to waning 
viral immunity to several common viruses like RSV 
caused by the lack of exposure due to isolation during the 
COVID-19 pandemic.40 Consequently, preventive vagal 
tone optimization through noninvasive VNS is likely to 
improve the viral infection outcome in children under 
2 years of age.

Interestingly, conventional physical therapy and 
nasotracheal suction, currently used in acute bronchiolitis 
for airway clearance, do improve HRV.41 Thus, it is likely 
that noninvasive VNS will have a positive preventive effect 
against severe RSV infection.

Moreover, noninvasive VNS has already been 
introduced in several clinical trials as an adjunctive therapy 
to prevent respiratory failure or cytokine storm during the 
COVID-19 pandemic.2,42-46 Of note, the results released by 
the prestigious Harvard Medical School Neuromodulation 
Center47 hold significant promise, lending support to 
incorporating noninvasive VNS for pediatric use.48 Indeed, 
a functional interaction between α7nAChR and a region 
of the SARS-CoV-2 spike protein (S) (using whole-cell 



Microbes & Immunity Benefit of noninvasive VNS in vaccine optimization

Volume 1 Issue 1 (2024)	 3� https://doi.org/10.36922/mi.2598

and single-channel recordings) has recently been shown 
to provide the molecular basis of the involvement of 
α7nAChRs in COVID-19 pathophysiology.49 Moreover, 
in silico experiments unveiled the correlation between the 
strength of SARS-CoV-2 variants binding to α7nAChR 
and their severity.50 SARS-CoV-2 binding to α7nAChR is 
likely to impair the vagus nerve activity38,51 in addition to 
macrophage function,52 ultimately disrupting cholinergic 
anti-inflammatory pathway,2 rather than solely competing 
with Ach.53 Indeed α7nAChR is expressed in the vagus 
nerve itself,54 thereby facilitating SARS-CoV-2 invasion and 
subsequent detection in the vagus nerve fibers.55 Therefore, 
attenuating the SARS-CoV2-mediated dysregulation of 
the vagus nerve activity, with noninvasive VNS, could 
lessen the severity of the infection, thereby contributing to 
sufficient and satisfactory protection against SARS-CoV-2 
in young children.

4. Discussion
4.1. Epidemiological and scientific issues

Neither previous SARS-CoV-2 infections nor serial 
vaccinations, including a bivalent vaccine, seem to be able 
to “markedly” protect against the Omicron subvariants.39 
Moreover, monoclonal antibodies capable of neutralizing 
the original Omicron variant are largely inactive against 
the new emerging subvariants. In addition, vaccine 
responsiveness in minors being afflicted with childhood 
diseases could be affected by their innate and adaptive 
immunity.56,57 On the contrary, noninvasive VNS presents a 
marked efficiency in mitigating the inflammatory response 
triggered by several recurrent pathogens and is thought to 
be safe, even for newborns,8 but has not been established 
as a preventive treatment for COVID-19 or other viral 
infections yet.

It may be time to consider noninvasive VNS as a new 
paradigm in managing infectious diseases, to optimize 
reciprocally innate and adaptative immunity without 
enhancing autoimmunity. Indeed, for centuries, the 
molecular mechanisms by which hematopoietic cells initiate 
and maintain host immunity are given much emphasis in 
the realm of immunology, which are classically divided 
into innate (rapid but unspecific immunity) and adaptive 
immunity (slower but specific defenses).58 Nevertheless, 
in the last two decades, this compartmentalized concept 
of immunity has been challenged by the discovery of an 
innate immune memory named “trained immunity,” as 
innate immunity also turned out to be modulated by 
previous encounters with pathogens.59 Simultaneously, 
Kevin Tracey and his team found that vagus nerve 
and cholinergic signaling play a pivotal role in neural 
regulation of immunity.1,60 Interestingly, activation of 

α7nAChR nicotinic receptor, essential in the cholinergic 
anti-inflammatory pathway and innate immunity, has also 
been shown, to be important for the regulation of adaptive 
immune responses at a later stage.61,62

Actually, vagus nerve, a pivotal component of the 
microbiota-gut-brain axis, optimizes immune regulation 
by influencing circadian clocks,63 the latter emerging 
as the master regulators of immunity64,65 and health.66 
Indeed, the ANS has been shown to coordinate circadian 
functions of hematopoietic stem cells,67 notably through 
a dual cholinergic signaling.68 VNS is known to modulate 
intrinsic biological rhythms in epileptic patients, as 
one of the complications reported in trials was induced 
sleep abnormalities.69 Moreover, research has revealed 
that noninvasive auricular VNS exhibited time-varying 
efficiency, with circadian rhythms.70 This is not surprising 
since the dorsal vagal complex itself houses a local 
network of autonomous circadian oscillators.71,72 Thus, 
cholinergic modulation of the immune system via vagus 
nerve stimulation could help complement the properties 
of innate and adaptive immune memory, providing a fast, 
broad-spectrum, specific, long-term, and self-harmless 
host defense (Figure 1).

4.2. Ethical issues

COVID-19 vaccines do not either completely prevent 
vaccines from SARS-CoV-2 infection or obstruct human-
to-human transmission, with the degree of protection they 
might have against long COVID-19 symptoms remaining 
controversial.73 Besides, because of molecular mimicry 
existing between SARS-CoV-2 and human components, 

Figure  1. Noninvasive vagus nerve stimulation (VNS) reciprocally 
enhances trained immune and adaptive immunity. Noninvasive VNS 
could help prevent severe infections, without augmenting autoimmunity, 
in populations with low high rate variability, by modulating the 
microbiota-gut-brain axis.
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COVID-19 vaccines or SARS-CoV-2 infection per se can 
even trigger the development of autoimmune diseases in 
predisposed patients,74,75 further favoring the emergence 
of long COVID-19.76 The autoimmune vaccine-related 
adverse effects are common in vulnerable patients 
(interestingly, those with lower vagal tone) for whom, as 
it happens, vaccination is currently recommended. One 
apparent solution to this would be the removal of mRNA 
sequences coding for peptides homologous to humans’ 
from the SARS-CoV-2 vaccines.77

There is a growing line of evidence that microbiome 
diversity may protect from pathogens,59 including SARS-
CoV-2, and from SARS-CoV-2-induced autoimmunity 
alike.60,78,79 As proven, notably, by vagotomy experiments,80 
the vagus nerve naturally links microbiota to the immune 
and the central nervous systems. Interestingly, VNS itself 
has been associated with changes in the gut microbiome.81 
Mere auricular acupressure, known to increase HRV,70 
demonstrated a significant reduction of early adverse 
events following COVID-19 immunization.82 Moreover, 
remarkably, a recent study suggested that 4  weeks of 
at-home self-administered transcutaneous auricular VNS 
may have a mild to moderate effect on reducing long 
COVID-19 mental fatigue,83 supporting the central role of 
autonomic impairment in COVID-19 pathophysiology.84-87 
Children affected by long COVID-19 are likely to benefit 
from noninvasive VNS.

More research and randomized controlled trials 
are definitely needed to assess transcutaneous VNS on 
vaccinated patients to determine if it can block the long-
term sequelae of COVID-19  and/or enhance vaccine 
efficacy. In the same way, trials of transcutaneous VNS in 
non-vaccinated individuals are mandatory to determine 
the efficacy of vagal stimulation, by itself, in the prevention 
of severe viral illnesses. Vulnerable patients should be 
stratified according to their HRV as already suggested23 
and followed up for a longer term in upcoming larger 
clinical trials to generate more reliable data to inform 
recommendations. A  more thorough evaluation is 
definitely a worthwhile endeavor despite the substantial 
financial support required to achieve this goal.

4.3. Economic issues

Noninvasive VNS provides an avenue to decrease the 
severity of illnesses (induced by RSV and/or future variants) 
and, thus, the number of hospitalizations, potentially 
alleviating the financial burden inflicted on the existing 
healthcare systems. Moreover, long COVID-19 presents 
an enormous economic burden likely due to its prolonged 
nature for years as more than half of the infected patients 
claimed that post-COVID-19 clinic failed to improve their 

long COVID-19 severity 1.5 years after infection regardless 
of variants of SARS-CoV-2.88 Therefore, it is of great clinical 
importance to immediately consider the adoption of an 
inexpensive preventive tool to halt the development of long-
term sequelae. As questioned and commented on by the late 
Hal E. Broxmeyer, the father of cord blood transplantation, 
“Will linking the brain with that of hematopoiesis and vice 
versa be a next frontier to investigate for potential health 
benefits?. Regardless, work in this direction, no matter how 
preliminary or simplistic at the beginning, is well-worth the 
effort. The longer we wait to start, the longer it will be before 
we get answers”.89 His remark has shrewdly attested to an 
old saying that “time is money,” aptly defining the struggle 
we are confronting now.

Meanwhile, research assessing nVNS coupled to 
vaccination is aimed to optimize vaccination regimes and 
cut down the number of injections necessary to confer a 
broad and long-term immune memory, by making the 
most of the circadian rhythms.64

5. Conclusion
Neuromodulation therapies have become a mainstay in 
healthcare delivery, in areas as diverse as pacemakers for 
bradycardia, and sacral implants for urinary incontinence. 
Noninvasive VNS has been granted approval by U.S. Food 
and Drug Administration (FDA) for primary headaches since 
2017, and even received an emergency use authorization for 
difficulty breathing during the recent COVID-19 pandemic. 
The vagus nerve is known to control many of the physiologic 
functions of the body and there is sound physiologic 
rationale for studying VNS as an adjunctive therapy 
facilitating immunization in young children. Additional 
studies are needed to validate this hypothesis, but with 
the growing body of relevant evidence, international and 
research organizations (WHO, UNICEF, NIH) should pay 
more attention to the data on noninvasive neuromodulation 
and support further research in this growing field. Indeed, 
a new paradigm, including noninvasive neuromodulation 
as an adjunct to care in the treatment of disease is likely to 
be both effective and cost-effective in some of humankind’s 
greatest health-care problems.
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