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1. Introduction

The graduation of demographic rates is a subject of special interest in demographic analysis, biostatistics, 
actuarial practice, and social planning. The demographer needs to describe the age-specific patterns 
of the various demographic phenomena in a population for various purposes such as providing 
population projections, constructing life tables and multiple decrement tables, as well as for calcu-
lating reproduction rates. The actuary needs a mortality and fertility basis suitable for calculations in 
life insurance and in designing of social security systems. Social planning also requires estimations 
and projections of the age-specific demographic patterns for many purposes, e.g., for designing 
health care systems, as well as for analysing and projecting the labour force.  

In order to estimate the unknown age-specific probabilities of the various demographic phenom-
ena underlying the empirical age-specific rates which are affected by random fluctuations, the typi-
cal way is the utilization of some graduation techniques to be applied to the empirical age-specific 
rates, under the assumption that the true probabilities follow a smooth pattern through age. A gradua-
tion technique, focusing to eliminate random fluctuations affecting the empirical measures, can 
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therefore serve in order to provide a clear description of the real shape of the various age-specific 
patterns, and consequently provide a real basis for population analysis and projections. The classical 
way to graduate empirical demographic rates is to fit a model that presents these rates as a paramet-
ric function of age. For the graduation of the age-specific rates of each one of the three demographic 
phenomena, specific parametric models have been proposed.  

Several parametric models have been proposed for the graduation of the age-specific mortality 
rates and many authors have contributed to the problem of estimating their parameters (Heligman 
and Pollard, 1980; Keyfitz, 1982; Forfar, McCutcheon, and Wilkie, 1988; Kostaki, 1992; Hannerz, 
1999; Karlis and Kostaki, 2000). A variety of models presenting the empirical age-specific fertility 
rates as a parametric function of age have also been proposed for the graduation of the age-specific 
fertility rates. A thorough description of these models is provided by Kostaki and Peristera (2007). 
Finally, for the description of nuptiality patterns alternative parametric models have been proposed 
(Coale and McNeil, 1972; Liang, 2000). However, for graduation purposes, a possible way to 
smooth demographic rates is the utilization of non-parametric smoothing techniques. Kernels have 
already been used for graduating mortality patterns (Copas and Haberman, 1983; Gavin, Haberman, 
and Verrall, 1993; Gavin, Haberman, and Verrall, 1994; Felipe, Guillen, and Nielsen, 2000). An 
evaluation of kernels as tools for graduating mortality patterns is provided by Peristera and Kostaki 
(2005).  

An alternative nonparametric way for graduating age-specific demographic rates would be the 
utilization of Support Vector Machines (SVM). These techniques appeared in 1995 in the framework 
of Vapnik’s Statistical Learning Theory (Vapnik, 1995; Moguerza and Muñoz, 2006) for classifica-
tion and regression purposes. In particular, SVM have been used in a number of applications 
(Chongfuangprinya, Kim, Park et al., 2011; Erdogan, 2013). They have been also used successfully 
for smoothing noisy data such as neighbourhood curves (Muñoz and Moguerza, 2005) and nonlinear 
profiles (Moguerza et al., 2007). Therefore, they can a priori be considered as a promising tool for 
demographic graduation tasks. In addition, the use of SVMs is affordable by practitioners with a lack 
of advanced statistical or computational skills. The reason is that documentation at all levels is 
available through the Internet and new libraries and easy-to-use software are continuously being de-
veloped (see Weka1 or the software package known as “R”2

The focus of this paper is to evaluate and compare the performance of kernels and SVMs for 
graduation purposes of demographic rates for each one of the three basic demographic phenomena. 
Both kernels and SVMs have been adjusted and applied to empirical data sets of mortality, fertility, 
and nuptiality rates of a variety of populations and years. In particular, a cross-validation approach 
has been conducted for the SVM models and a plug-in technique has been used for kernel models, in 
order to fit their corresponding parameters. For comparison purposes parametric models are also 
fitted to the same empirical data sets. In the next section, a short description of existing parametric 
models for fitting mortality, fertility, and nuptiality data is provided. Sections 3 and 4 are devoted to 
a presentation of kernels and SVMs, respectively. Then, Section 5 provides the results of our calcu-
lations in order to assess the utilization of kernels and SVM techniques as tools for estimating 
age-specific mortality, fertility, and nuptiality patterns. Some concluding remarks and some issues 
for further research are given in Section 6. 

).  

2 Parametric Models 

2.1 Mortality Models 

A wide variety of mortality laws has been presented in the literature (Brass, 1971; Mode and Busby, 
1982) since the first attempt by de Moivre in 1725. Among all of these laws, the most successful 
attempt to describe the age-specific mortality pattern for the total life span through a parametric 
                                                        
1 https://weka.wikispaces.com/LibSVMor 
2 https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Classification/SVM 
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model and the most widely used since 1980 is the one proposed by Heligman and Pollard (1980). 
This model (hereafter HP) is described by the formula, 
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where qx is the probability of dying within a year, px=1–qx, and A to H are parameters to be estimated.  

2.2 Fertility Models 

A variety of alternative have been proposed in the literature. In this section, a summary of parametric 
models for fitting the age-specific fertility curve is provided. 

The Hadwiger function (Hadwiger, 1940; Gilje, 1969) takes the form: 

 
( )

3
2 2exp 2 ,ab c c xf x b

c x x c
    = − + −    

    
 

where a, b, and c are parameters to be estimated and x is the age of the mother at birth.  
The Gamma function (Hoem, Madsen, Nielsen et al., 1981) is expressed by:  
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where R, b, c, and d are parameters that should be estimated.  
The Beta function by Hoem et al. (1981) is given by: 
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where R determines the level of fertility, and A, B, α, and β are calculated as:  

2
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v being the mean and 2τ  the variance. 
The Schmertmann (2003) model for representing age-specific fertility schedules is obtained using 

a piecewise quadratic spline function by defining three index ages that describe the shape of the 
age-specific fertility: 
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with Knots t0 < t1 < …< t4 falling in the interval between ages α and β, where t0 = α, (the lowest age 
of childbearing) and *( ) [0, ]k kt t MAX x t− ≡ − . 

A deviation from its classical shape in terms of a bulge in fertility rates of younger women is exhib-
ited by recent fertility patterns of some developed countries. Chandola et al. (1999) developed a 
two-component mixture model of the Hadwiger function for the description of distorted fertility pat-
terns: 
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Where x is the age of the mother at birth, and parameters m, α, b1, c1, b2, and c2 are to be estimated, 
resulting in a seven parameter model by the inclusion of an additional parameter (Ortega and Kohler, 
2000). 
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A model with two versions capturing both the classical and the distorted fertility pattern was pro-
posed by Kostaki and Peristera (2007). The simple version of the Peristera-Kostaki model (hereafter 
P-K model) takes the form: 
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Where f(x) is the age-specific fertility rate at age x, c1, µ, and σ are parameters to be estimated, while 
σ(x) = σ11 if x ≤ µ, and σ(x) = σ12 if x > µ.  

The version capturing the distorted fertility pattern of the Peristera and Kostaki model (hereafter 
P-K mixture model) is a mixture model given by:  
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Where f(x) is the age-specific fertility rate at mother age x, while σ(x) = σ11 if x ≤ µ and σ(x) = σ12 if 
x > µ and c1, c2, µ1, µ2, σ11, σ12, σ11, σ2 are parameters to be estimated.  

2.3 Nuptiality Models 

Next, we provide a brief description of different parametric models proposed in literature for the 
fitting of empirical first-marriage rates. 

Coale and McNeil (1972) defined the probability density function (hereafter C-M) for the age dis-
tribution of first-marriages as: 
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where Γ denotes the gamma function, and α, β, μ are parameters to be estimated.  
The generalized log gamma model (hereafter GLG) proposed by Kaneko (1991, 2003) is ex-

pressed by: 
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where f(x) is the age-specific first marriage rate at age x, C, λ, and u are parameters to be estimated 
and Γ denotes the gamma function.  

Since in recent years a considerable variation is observed in the pattern of first-marriage in data 
sets of several populations, Liang (2000) built a mixture model using the double-exponential distri-
bution. This model, denoted as the mixture Coale-McNeil model (hereafter MC-M), is described by: 
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where m, α1, λ1, μ1, α2, λ2, and μ1 are parameters to be estimated. 

3. Kernel Techniques 

Let (xi, yi), i = 1,…,p be a set of observations of two variables X and Y whose relation is given by an 
unknown regression function m(x):  

 ( ) , 1, , ,i i iy m x i pε == +   
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where εi are independent random variables with zero mean and constant variance. In order to esti-
mate the unknown function m at a point x, an averaging of the values of the response variable is lo-
cally done. The smoothness of the resulting estimator is controlled by a bandwidth determining the 
width of the neighbourhood over which the averaging is performed. As a result, the estimator of the 
function m takes the form:  

 
( ) ( )1

1 2ˆ ; , , ,h h n im x n W x X X X Y−= ∑  , 

where Wh is a weight function depending on the bandwidth parameter h and variables X1, X2,…, Xn. 
The shape of the weight function Wh is represented by a so-called kernel function, which includes 
the bandwidth h that adjusts the size and the form of the weights around x, acting as a scale parame-
ter. Hence, kernel regression estimators correspond to local weighted averages of the response vari-
able, with weights determined by the kernel function K, depending on the size of the weights on 
the bandwidth parameter. Usually, for regression purposes, K performs and has the properties of a 
probability density function: it is generally a positive, smooth function, decreasing monotonically as 
the bandwidth parameter increases in size and peaking at zero.  

A detailed review of the formulae proposed in the literature for the kernel estimator m̂ of the re-
gression mean function m can be consulted in Peristera and Kostaki (2005), where it is shown that 
the Gasser-Müller estimator (Gasser and Müller, 1979, 1984) is an adequate estimator for the 
graduation of mortality data, its formula being:  
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where x0 = –∞, xn = ∞, xi denotes the ith largest value of the observed covariate values and Y[i] 
the corresponding response value.  

Regarding the selection of the bandwidth parameter, a description of techniques can be consulted 
in Hardle (1990, 1991), and Peristera and Kostaki (2005). A typical way to select the bandwidth pa-
rameter is to build a direct plug-in estimator of the optimal smoothing parameter h. Gasser et al. 
(1991) described how unknown quantities can be effectively estimated and explicit expressions for h 
appropriate to the Gasser-Müller estimator are provided. The selection of a global or a local band-
width is another crucial decision. A local selection allows the use of a smaller bandwidth in areas of 
high density, while for areas of low density a larger bandwidth can be adopted (Brockmann et al., 
1993; and Hermann, 1997, for discussions on the advantages of using kernel regression estimators 
with a local bandwidth). The underlying idea of the plug-in method is to select the optimal band-
widths by estimating the asymptotically optimal mean integrated squared error bandwidths. 
Hermann (1997) developed a generalization of the global iterative plug-in algorithm of Gasser et al. 
(1991) for the selection of a local bandwidth, and the advantages of the local selection over the 
global plug-in rule and the cross-validation method are shown.  

4. Support Vector Machines 

The SVM technique is part of the regularisation methods (Moguerza and Muñoz, 2006). These 
methods also include Splines. In fact, there is a close relation between both methodologies — SVM 
and Splines (Pearce and Wand, 2006). Next, we provide a brief description of the regression version of 
SVM and its main features. SVM can be presented from its geometrical interpretation. Basically, the 
method works by solving an optimization problem of the form (Tikhonov and Arsenin, 1977): 
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0 is a constant that penalizes non-smoothness, HK is a space of functions known as Reproducing 
Kernel Hilbert Space (RKHS) (Aronszajn, 1950; Moguerza and Muñoz, 2006), and ║f║K is the norm 
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of f in the RKHS. The loss function L measures the estimation error of the method and ║f║K is a 
measure for non-smoothness. The smaller ║f║K is, the smoother f becomes. This means that the 
function *

Kf H∈  obtained as the solution of this optimization problem will be the result of a com-
promise between accuracy and smoothness. As a consequence, this way to proceed seems to be a 
nice approximation for the graduation of demographic data. Moreover, the optimization problem to 
solve is convex and therefore, without local minima. This convex property is one of the main differ-
ences with other methods, avoiding the possible existence of local solutions. 

Another key issue of SVM is its ability to map the data into a higher-dimensional space (known as 
“feature space”). To achieve this task, a kernel approach is used in order to operate in the feature 
space. A kernel K is a real-valued function ( ),K x y ∈ℜ  where usually , nx  y  ∈ℜ , which makes the 
role of a scalar product in the feature space. In this way, the explicit coordinates in this higher-dim-
ensional space are never calculated, as only the inner products between the images of all pairs of 
data in the feature space are needed. Three of the most widely used kernels: the linear kernel K(x,y) = 
xTy which corresponds to the identity mapping; the polynomial kernel K(x,y) = (c + xTy)d, where c 
and d are constants, which maps the data into a finitely dimensional space; and the Gaussian kernel 

2

( )
x- y

K x, y = e σ
−

, where σ is a positive constant, which maps the data into an infinitely dimensional 
space. The Gaussian kernel, given its approximation capacity, is the most extensively used (Mo-
guerza and Muñoz, 2006), and the one that we suggest for graduation purposes. 

In practical implementations of the method, such as the one provided by the software R, the accu-
racy and smoothing properties are achieved by fixing a band determined by a constant ε > 0 around 
the solution *

Kf H∈ . In order to penalize strong violations of the band, another constant C > 0 is 
used. The constant ε makes the role of the loss function and C performs the control of smoothness. 
As a consequence, three parameters are to be fixed when using SVM with the Gaussian kernel, 
namely: ε, σ, and C. In practice, a grid of parameters can be determined visually taking into account 
that the problem at hand is one-dimensional. Then, a so called cross-validation is performed, that is, 
a random search within the grid is done in order to find the best combination of the parameters. 

5. Evaluation and Comparisons  

5.1 Numerical Results for Mortality 

In our calculations we used the empirical age-specific mortality rates of the male and female popula-
tions in Sweden, for the time periods of 1981–1985, 1984–1988, and 1991–1995, as well as those in 
France and Japan for the years of 1990, 1991, and 1995. The Swedish data sets were taken from Sta-
tistics Sweden while the French and Japanese ones were parts of the Berkeley mortality database 
(2005) available from the web. 

For kernel applications, the subroutine “lokerns” of the library “lokern” for the R-package is used 
for the calculation of Gasser-Muller estimators with local bandwidth parameter. This is available 
from http://cran.r-project.org/web/packages/lokern/index.html. In order to select bandwidth for a 
local linear Gaussian kernel regression estimator, a direct plug-in technique (Ruppert, Sheather, and 
Wand et al., 1995) is used. The initial bandwidth parameter is derived using the KernSmooth library 
in R package. In particular, for this implementation we obtained an initial bandwidth h = 2.3849. 

The parameters in the Heligman-Pollard model are estimated using an iterative routine of the Nag 
library that is based upon a modification of the Gauss-Newton algorithm, described by Gill and 
Murray (1978). The model was fitted using weighted non-linear least squares, minimizing the fol-
lowing sum of squares: 

http://cran.r-project.org/web/packages/lokern/index.html�
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With weights wx the reciprocals of the estimated variances of the age-specific mortality rates
/ (1 )x x x xw E q q= − , where Ex is the exposed-to-risk population at age x and qx is the mortality rate 

at age x.  
For the SVM applications, the subroutine “svm” of the library e1071 for the R-package is used for 

the derivation of the SVM model parameters. This is available from http://cran.r-project.org/. In or-
der to select the parameters ε, σ, and C for the ε-regression procedure, the previously 
tioned cross-validation technique was conducted. Since the search within the grid of parameters in-
volves randomness, for the sake of replicability, we provided the final combination of parameters 
used in the experiments. In particular, the values ε= 0.02, σ = 125 and C = 2200 have been chosen 
for this SVM implementation. 

Although the graphical representation of the observed and the graduated rates is a useful way for 
deriving conclusions, we also used a statistical criterion in order to evaluate the performance of the 
alternative estimators. To check the closeness of the graduated rates to the observed ones, we used 
the χ2 criterion, (4.1) that was used as minimizing criterion for fitting HP model. 

The values of the criterion (4.1) for all the data sets used, and all the graduation techniques ap-
plied, are presented in Table 1. Examining these values, one can easily observe that the SVM  

 
Table 1. Values of (4.1) at the exit of the estimation procedure for HP, SVM, and Kernels  

Sweden    

 HP SVM Kernels 

Females    
1981–1985 950 725 2842 
1984–1988 861 293 1817 
1991–1995 1468 882 2507 
Males    
1981–1985 180 717 3813 
1984–1988 191 485 3125 
1991–1995 268 490 3340 

Japan    

Females    
1990 4370 453 1767 
1991 3849 568 1859 
1995 3516 320 1601 
Males    
1990 1140 495 2219 
1991 951 300 2047 
1995 542 394 2023 

France    

Females    
1990 2887 594 3508 
1991 1995 639 2897 
1995 879 366 1839 
Males    
1990 983 786 4685 
1991 687 999 4625 
1995 987 1117 2697 

http://cran.r-project.org/�
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graduation proves adequate in terms of goodness of fit. Considering the value of 4.1 quantities, these 
values are lower in all female cases for SVM than for the HP model and kernels for the Swedish and 
the Japanese data sets. In males, SVM are better than kernels in all cases, they are a bit higher com-
pared to the HP model for the Swedish data and in comparable levels in the French and Japanese 
data sets. 

Figures 1–6 illustrates the results of each technique separately for some chosen cases. It is clear in 
these figures that the results of SVM are closer to the empirical data than those of HP formula, the 
later exhibiting some systematic deviations in the early adult ages. It is also clear that SVM provides 
smoother results than kernels. In order to do that more clearly, we compared only kernels and SVMs 
(Figures 2A and 4A). 

 

 
 

Figure 1. Empirical and graduated qx-values, French females, 1995.          Figure 2. Empirical and graduated qx-values, Japanese females, 
1991. 

 

 
 

Figure 2A. Empirical and graduated qx-values, Japanese females, 1991.   Figure 3. Empirical and graduated qx-values, Swedish females, 
1991–1995. 
 

5.2 Numerical Results for Fertility  

In order to evaluate SVM as a tool for graduating age-specific fertility patterns, we used period 
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age-specific fertility rates for the populations of Sweden, Norway, and Denmark (1996 and 2000); 
Belgium (1993 and 1995); Greece and Italy (1995 and 2000); UK (1992 and 2000); Ireland (1995 
and 2000); the white and black populations of the USA (2003); and for Spain (1942 and 1963). The 
empirical data sets were obtained from Eurostat New Cronos database (http://www.eui.eu/Rese-
arch/Library/ResearchGuides/Economics/Statistics/DataPortal/NewCronos.aspx). Additionally, single 
year age-specific fertility rates for the US were derived for the 2003 Natality Data Set, obtained after 
a request from the US National Center of Health Statistics (http://www.cdc.gov/nchs/). Cohort data 
are also used for Spain for the generations born in 1943 and 1962, obtained from the Eurostat New 
Cronos database. It should be noted that even for cohorts not yet completed, Eurostat provides esti-
mates of the fertility rates for older women by using the rates observed for previous generations, 
without waiting for the cohort to reach the end of the reproductive period. Parity-specific birth rates 
were computed as occurrence exposure rates based on parity in marriage. 

Then, we applied SVMs and kernels and also provided the fits of the alternative parametric models 
to these data sets, the latter initially calculated by Kostaki and Peristera (2007). In populations with no 
apparent early-age hump, except of kernels and SVMs, the fits of Hadwiger, Gamma, and Beta models 
(Chandola, Coleman, and Hiorns, 1999; Hoem, Madsen, Nielsen et al., 1981), P-K model (Kostaki  

 

 
 

Figure 4. Empirical and graduated qx-values, French males, 1991.          Figure 4A. Empirical and graduated qx-values, French males, 1991. 
 

 
 

Figure 5. Empirical and graduated qx-values, Japanese males, 1990.    Figure 6. Empirical and graduated qx-values, Swedish males, 1981–1985. 

http://www.eui.eu/Research/Library/ResearchGuides/Economics/Statistics/DataPortal/NewCronos.aspx�
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and Peristera, 2007), and the quadratic Spline model (Schmertmann, 2003) are provided, while in 
the cases of distorted fertility distributions, the Hadwiger mixture model (Chandola, Coleman, and 
Hiorns, 1999; 2002) and the P-K mixture model (Kostaki and Peristera, 2007) are provided.  

In order to avoid heterogeneity, we also used data differentiated by order of birth from both cohort 
and period data sets. Finally, in the case of the USA, the fits of the alternative models are provided 
for the white and the black population separately. Details for fitting the alternative parametric mod-
els are given by Kostaki and Peristera (2007).  

The parameters of the various models have been estimated by means of a non-weighted non-linear 
least-squares procedure, minimizing the following sum of squares:  

 
( )2ˆ ,x x

x
f f−∑

 
(4.2) 

where x̂f  is the estimated marriage rate at age x and fx is the corresponding empirical one. This 
minimizing criterion has been used as most appropriate for fertility graduation by Kostaki and Peris-
tera (2007) and also suggested by Hoem et al. (1981) as providing equal good fits as the more com-
plicated weighted one, with weights reciprocal to the estimated variances of the age-specific rates, 
the latter being most appropriate when fitting mortality rates.  

For kernel applications, in the case of mortality data, the subroutine “lokerns” of the library 
“lokern” for the R-package was used for the calculation of Gasser-Muller estimators with lo-
cal bandwidth parameter. In a similar way, the initial bandwidth parameter was derived using the 
KernSmooth library in R package. An initial bandwidth of h =1.9066 was obtained particularly for 
this implementation. 

As in the case of mortality data, for the SVM techniques, the subroutine svm of the library e1071 
for the R-package is used, and a similar two-step cross-validation technique is used to select the pa-
rameters ε, σ, and C of the ε-regression procedure. Parameters ε, σ, and C play the same role as ex-
plained in the mortality study. In particular, the values ε = 0.0001, σ = 40 and C = 1.8, have been 
obtained for this SVM implementation. 

The values of (4.2) for all the data sets used, and all graduation techniques applied, are presented 
in Tables 2 and 3. The results of fitting the parametric models were first presented by Kostaki and 
Peristera (2007). Figures 7–12 provide illustrations for some chosen cases. In all cases, we used ages 
ranging from 15 to 48, so each schedule has 34 rates.  

As stated in the tables and figures, the results of SVM prove superior to the corresponding ones of 
all the other models. SVM produced results that in the vast majority of cases are closer to the em-
pirical rates, with a sole exception, the results for the USA data differentiated by order of birth and 
race, where the performance of the P-K mixture model were somewhat superior. Regarding the fig-
ures, one can easily observe that the results of SVM were closer to the empirical values especially 
for the ages in the tails and the peak of the fertility curve.  
 
Table 2. Values of (4.2) multiplied by 100.000, at the exit of the estimation procedure for P-K model, Beta model, Gamma model, Hadwiger model, 
quadratic Spline model, kernels, and SVM 

SSE*106 P-K Model BetaModel Gamma Model Hadwiger Model Quadratic Spline Model Kernel SVM 

Period Data        

Sweden        

1996 115 108 132 326 174 67 72 

2000 117 181 321 689 174 30 11 

Norway        

1992 242 175 265 656 263 65 61 

2000 233 225 640 329 287 40 10 

Denmark        

1992 103 107 130 383 169 54 20 
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Continued table2 
SSE*106 P-K Model BetaModel Gamma Model Hadwiger Model Quadratic Spline Model Kernel SVM 

2000 225 363 575 1073 287 51 6 
Belgium        
1993 401 396 380 540 462 68 15 
1995 346 374 376 558 525 78 30 
Greece        
1995 190 137 184 289 101 26 14 
2000 34 114 491 617 55 14 13 
Italy        
1995 20 58 139 352 49 18 11 
2000 47 71 524 908 82 14 3 
Cohort Data        
Spain        
1943 732 1005 1159 1547 5450 452 562 
1962 295 259 1113 184 3720 69 67 

 
Table 3. Values of (4.2), multiplied by 100.000, at the exit of the estimation procedure, for P-K mixture model, Hadwiger mixture, and SVM for the 
US data 

SSE*106 P-K Mixture Model Hadwiger Mixture Model Kernel SVM 

Period Data  Total Births     

UK     

1992 154 35 37 14 

2000 99 22 40 14 

Ireland     

1995 437 97 62 90 

2000 78 177 65 43 

Spain     

1999 29 17 30 12 

2000 23 15 31 6 

Cohort Data Total Births     

Spain     

1963 77 85 59 62 

Period Data  First Births     

UK     

2004 5 8 47 4 

Ireland     

2000 73 53 61 62 

Period Data  Second Births     

UK     

2004 4 5 45 3 

Ireland     

2000 31 31 25 28 

USA 2003     

Total 150 28 63 58 

White 28 156 63 51 

Black 39 190 103 86 
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Figure 7. Observed and estimated period age-specific fertility rates for       Figure 8. Observed and estimated cohort age-specific fertility rates 
Denmark, 2000.                                                    for Spain, 1943. 

 

   
 

Figure 9. Observed and estimated cohort age-specific fertility rates           Figure 10. Observed and estimated age-specific fertility rates of  
for Spain, 1963.                                                     Ireland, 2000. First births. 
  

5.3 Numerical Results for Nuptiality 

In order to evaluate the adequacy of SVM for nuptiality graduation purposes, we applied SVM to a 
variety of empirical data sets. For comparison reasons, we also fit the same data sets to the SC-M, C-M, 
and GLG models. In cases where these simple models fail to adequately estimate the nuptiality pattern 
in data sets expressing heterogeneity, we fitted the MC and the P-K mixture models.  

Once again, for kernel techniques, in the case of mortality and fertility data, the subroutine 
“lokerns” of the library “lokern” for the R-package was used for the calculation of Gasser-Müller  
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Figure 11. Observed and estimated age-specific fertility rates of US, 2003.    Figure 12. Observed and estimated age-specific fertility rates of US, 
2003. White population.                                            2003. Black population. 

 
estimators with local bandwidth parameter. And in a similar way, the initial bandwidth parameter is 
derived using the KernSmooth library in R package. In particular, for this implementation, an ini-
tial bandwidth of h =1.3118 was obtained. 

Also, in the case of mortality and fertility data for the SVM applications, the subroutine svm of the 
library e1071 for the R-package was used, and a similar two-step cross-validation technique was 
used to select the parameters ε, σ, and C of the ε-regression procedure. In particular, the values ε = 
0.00008, σ = 0.0424, and C = 0.0662, have been obtained for this SVM implementation. 

Single-year age-specific first-marriage rates for the female populations of Spain, Greece, Italy, 
Germany, the Netherlands, Norway, Sweden, Finland, Ireland, and the UK for the available years 
were used. These data were obtained from the Eurostat New Cronos database (http://www.eui.eu/ 
Research/Library/ResearchGuides/ Economics/Statistics/DataPortal/NewCronos.aspx). 

The parameters of the parametric models are estimated, as in the case of fertility for the same 
reasons mentioned before, by means of a least-squares procedure by minimizing the following sum 
of squares.  

 
2ˆ( ) ,x x

x
f f−∑   (4.3)  

where x̂f  is the estimated first-marriage rate at age x and ƒx is the empirical one.  
All the parametric models are fitted by means of a non-linear least-squares procedure and a 

Gauss-Newton optimization scheme. The Matlab built-in routine for non-linear parameter estimation 
“lsqnonlin” was used in order to find the unconstrained minimum of the unweighted sum of squares.  

The residual sums of squares are given in Table 4. Furthermore, the empirical and graduated 
age-specific first-marriage rates for selected years and countries are depicted in Figures 13–22.   

The observed and estimated rates of GLG, C-M, and SC-M models as well as of SVM are de-
picted in Figures 13–19 for the populations of Germany, Greece, Italy, the Netherlands, Norway, 
Spain, and the UK. 

The existence of a bulge at young ages and another one at the older ones becomes obvious in re-

http://www.eui.eu/%20Research/Library/ResearchGuides/%20Economics/Statistics/DataPortal/NewCronos.aspx�
http://www.eui.eu/%20Research/Library/ResearchGuides/%20Economics/Statistics/DataPortal/NewCronos.aspx�


Nonparametric graduation techniques as a common framework for the description of demographic patterns 

 

14 International Journal of Population Studies | 2016, Volume 2, Issue 1 

cent Swedish data. The bulge during the young ages appears around age 20 and the older one around 
age 40. This phenomenon has also started to appear in the data sets of Finland and Ireland. In 
these cases, simple models fail to closely estimate the tails and the peak value of the marriage dis-
tribution. We thus fitted the mixture model MC-M to the data sets. Figures 20–22 provide illustra-
tions of the results.  

According to the values of the minimizing criterion, for the majority of the cases the C-M model 
provides the best fits among the parametric models. The second best fit is usually obtained by the 
GLG one. 

As mentioned above, a variety of factors related to the socioeconomic and cultural background of 
male and female populations may contribute to the appearance of the heterogeneity in the 
first-marriage curve. However in order to be able to verify or reject all these hypotheses about het-
erogeneity in the first-marriage curve, further research based on empirical evidence is required. 

Turning now to the SVM, we observed from the values of the residual sum of squares as well as 
from the graphical illustration, that their performance is superior in comparison to any other para-
metric approach. In the vast majority of the data sets, the values of the residual sum of squares were 
in significantly lower levels than those resulting by model fitting. It is probably worth mentioning 
that this technique works with high accuracy in both homogeneous and heterogeneous data sets, 
while for the later cases more complicated models are required. Taking a closer look at the figures, 
we observed that SVM performance is highly superior to parametric modelling, in the peaks and the 
tables of the marriage distributions where parametric modelling provides systematic deviations from 
the empirical rates.  

 
Table 4. Values of (4.3), multiplied by 100.000, at the exit of the estimation procedure 
FEMALES 

SSE*106 Standard Coale-McNeil GLG Coale-McNeil Kernel SVM 

Spain      

1995 62308 17358 14058 788 216 

2002 46959 14321 12446 731 185 

Greece      

2001 54891 8333 63228 331 214 

2002 54891 8333 63228 289 329 

Italy      

1990 38956 8654 8251 2431 2706 

2000 47607 8605 6597 603 312 

Germany      

1998 27263 4936 4761 786 517 

2001 19583 3331 3137 279 195 

Netherlands      

1996 19516 2661 2563 859 1144 

2002 40108 8705 8171 372 201 

Norway      

1996 29525 8001 7828 1746 3986 

2002 20803 5770 5291 352 539 

UK      

1996 12060 2271 2226 449 223 

1999 214910 10280 10278 759 241 
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SSE*106 Standard Coale-McNeil GLG Coale-McNeil Mixture Coale-McNeil Kernel 

Sweden      

1997 16568 8873 9152 8482 929 

2002 32185 18168 17859 26983 327 

Finland      

1993 29465 8252 8413 2251 935 

1998 23595 8527 8436 6049 833 

Ireland      

1993 31352 12977 12975 7389 2032 

1998 62918 19153 17110 8563 886 

MALES 

SSE*106 Standard Coale-McNeil GLG Coale-McNeil Kernel SVM 

Spain      

1990 52827 13188 1220 1198 496 

2002 22002 9331 9261 656 250 

Greece      

1998 22913 5541 5477 334 284 

2002 18348 5543 5528 277 283 

Italy      

1991 21338 5345 5334 829 240 

2000 23853 7017 6624 360 181 

Germany      

1993 13191 3127 3084 428 567 

1998 21424 5043 4609 317 670 

Netherlands      

1995 2350 15534 15534 603 783 

2003 19898 6130 5924 195 327 

Norway      

1997 13648 6041 6041 872 1744 

2001 10697 4134 4138 171 228 

UK      

1999 21491 3126 3088 281 288 

2000 20437 2469 2460 215 223 
 

SSE*106 Standard Coale-McNeil GLG Coale-McNeil Mixture Coale-McNeil Kernel SVM 

Sweden       

1997 4827 3904 3822 8482 519 1039 

2001 7135 5411 5382 26983 211 273 

Finland       

1995 8290 3377 4350 2251 398 453 

2002 12020 7793 7791 6049 305 346 

Ireland       

1996 13788 4468 4422 7389 242 317 

1998 34290 12541 11680 8563 808 281 
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Figure 13. Observed and estimated age-specific nuptiality rates, Spain,          Figure 14. Observed and estimated age-specific nuptiality rates, 
males,                                                              1990 Greece, females, 2002. 
 

  
 

Figure 15. Observed and estimated period age-specific fertility rates,             Figure 16. Observed and estimated age-specific nuptiality rates, 
Italy, males, 1991.                                                      Germany, females, 1998. 
 

6. Conclusions 

In this paper, we evaluated and compared SVMs and kernels for graduating age-specific demo-
graphic rates. The performance of these two nonparametric techniques has been evaluated by apply-
ing them to a set of empirical mortality, fertility, and nuptiality rates of different populations and 
time periods. Moreover, parametric models are fitted to these rates in order to compare their effec-
tiveness. With regards to the values of the typical minimization criteria, the results for the two non-
parametric techniques are apparently closer to the empirical values than those provided by the para-
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metric models. This performance is probably due to the higher smoothness capacity of parametric 
models. A higher degree of smoothness may lead to larger distances between the graduated and the 
empirical values and, in many cases; it provides oversimplifications of the described patterns or sys-
tematic deviations between the empirical and the graduated values. Concerning the comparison be-
tween SVMs and kernels (the two nonparametric techniques), SVMs provided results, usually with 
lower values of the minimizing criteria. 

 

 
 

Figure 17. Observed and estimated age-specific nuptiality rates, the            Figure 18. Observed and estimated age-specific nuptiality rates, 
Netherlands, males, 2003.                                              Norway, females, 1996. 

 

  
 

Figure 19. Observed and estimated age-specific nuptiality rates, the UK,           Figure 20. Observed and estimated age-specific nuptiality rates,  
males, 1999                                                          Sweden, females, 1997. 
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Figure 21. Observed and estimated age-specific fertility rates, Finland,        Figure 22. Observed and estimated age-specific nuptiality rates,  
females, 1993.                                                       Ireland, males, 1998. 
 

In addition, the SVM method produces results closer to the empirical rates in most cases, showing 
a successful performance for the graduation of empirical rates in both simple and distorted data sets. 
It can be observed in the figures that the results provided by SVM were closer to the empirical data 
than those of most alternative methods, especially for ages in the peak and the tails of nuptiality and 
fertility. 

Nonparametric graduation techniques have the advantage of being suitable to all data sets. This is 
an important remark, as for data sets with distorted patterns; the use of standard parametric models is 
inadequate. Another advantage of the nonparametric approach is that the user has the possibility of 
regulating the degree of smoothness and, as a consequence, choosing a degree adapted to the goal of 
the graduation framework, avoiding in many cases oversimplification of age patterns. 

As a future extension of the current work, we propose the use of SVM as a multivariate model for 
demographic forecasting. 
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